Kingdoms and Classification CREATED BY THE GOOD AND THE BEAUTIFUL TEAM #### Prerequisite Unit Most of The Good and the Beautiful science units can be used in any order. However, it is very helpful to complete this unit before *Botany* and *Mammals*. ### Table of Contents | Unit Informationii | |----------------------------------------------------------| | Read-Aloud Book Pack & Correlated Booksiii | | Grades 7–8 Lesson Extensionsiv | | Supplies Neededv | | Vocabularyvii | | Lesson 1: Introduction to Living Things | | Lesson 2: Cells | | Lesson 3: Classification | | Lesson 4: Archaebacteria and Eubacteria Kingdoms | | Lesson 5: Protista Kingdom | | Lesson 6: Fungi Kingdom: Yeasts, Molds, and Mushrooms | | Lesson 7: Plantae Kingdom: Nonvascular and Vascular | | Lesson 8: Plantae Kingdom: Gymnosperm and Angiosperm | | Lesson 9: Animal Kingdom: Invertebrates | | Lesson 10: Animal Kingdom: Vertebrates | | Lesson 11: Taxonomist in Training: Classification Review | © 2022 Jenny Phillips | goodandbeautiful.com No part of this PDF document may be copied or reproduced for anyone outside your family or school group of eight children or fewer. If you are using this document for a school group, you must purchase a copy for each set of eight children in the class. ## Unit Information #### Science Journal All The Good and the Beautiful science units include activities in a student journal. Each student should have his or her own student journal, and the parent or teacher will direct the student regarding when to complete the activities as directed in the lessons. Science journals can be purchased by going to goodandbeautiful.com/science and clicking on the Kingdoms and Classification unit link. #### Science Wall All The Good and the Beautiful science units include vocabulary words to be placed on your science wall, which is a wall or tri-fold presentation board in your learning area to which you can attach the vocabulary words and other images. Cut out the vocabulary word cards at the beginning of the unit. The course will indicate when to place them on the wall. #### Lesson Preparation All The Good and the Beautiful science units include easy-to-follow lesson preparation directions at the beginning of each lesson. #### **Activities and Experiments** Many of The Good and the Beautiful science lessons involve hands-on activities and experiments. An adult should always closely supervise children as they participate in the activities and experiments to ensure they are following all necessary safety procedures. #### Optional Microscope Activities This unit introduces the use of microscopes. In this unit there are several microscope activities, beginning with Lesson 2. The microscope greatly enhances the lessons, but if you do not have a microscope, this unit can still be completed by watching the microscope activity videos. Note: For help selecting and using your microscope, see "How to Use a Microscope" at goodandbeautiful. com/sciencevideos. #### **Experiment Videos** Go to goodandbeautiful.com/ sciencevideos and click on the Kingdoms and Classification link or use the Good and Beautiful Homeschooling app to see videos of experiments used in this unit. This is a convenient way to watch experiments that may be more complicated. Children often learn best through hands-on experience; therefore, this unit includes a supply list and instructions for all experiments, and you may choose to do as many as you wish. #### Unit Videos Some lessons include videos that were created by The Good and the Beautiful. Have a device available that is capable of playing the videos from goodandbeautiful.com /sciencevideos or from the Good and Beautiful Homeschooling app. #### Content for Older Children Some lessons include extra content that is more applicable for older children (grades 7–8). Parents or teachers may choose to skip this content if instructing only younger children. #### Content for Younger Children Some lessons include extra content that is more applicable for younger children (grades 3–6). Parents or teachers may choose to skip this content if instructing only older children. #### Versions New discoveries in kingdoms and classification are being made on an ongoing basis. This course is reviewed and revised periodically to keep the information as up-to-date as possible. This version is the second edition of this unit. ## Read-Aloud Book Pack The books below are optional read-aloud books that complement this unit. These books can be purchased as a book pack by going to goodandbeautiful.com/science and clicking on the Kingdoms and Classification link. Microbes: The Tiny Creatures Around Us by Rebecca Borger Taxonomy Trivia by The Good and the Beautiful Team ### CORRELATED BOOKS The Good and the Beautiful Library has several books that correlate well with the Kingdoms and Classification unit. It can be a wonderful experience for children to read books on their levels related to the subjects they are learning in science. The library includes both fiction and nonfiction books organized according to reading level. Find these correlated books by going to goodandbeautiful.com and clicking on the Kingdoms and Classification science unit product page. # GRADES 7-8 ## Lesson Extensions #### How the Extensions Work Each lesson has an optional lesson extension for children in grades 7–8. Complete the lesson with all the children, and then have the older children complete the self-directed lesson extension. These extensions are located in the Grades 7–8 Kingdoms and Classification Student Journal. #### Answer Key The answer key for the lesson extensions can be found by going to **goodandbeautiful.com/science** and clicking on the *Kingdoms and Classification* unit. From there click on the FAQs, Helps, and Extras page. #### Flexibility The amount of time it will take to complete each lesson extension will vary for each child. The average time is about 10–15 minutes per extension. Parents/teachers and children may choose to omit parts of the lesson extension if desired. Encourage the children to stretch their capabilities, but also reduce work if needed. #### **Taking Notes** Some of the grades 7–8 lesson extensions have the children summarize the material read. Teach the children to look for key information and then to summarize the most important points. Students can also add notes with their thoughts and the facts that are most interesting to them. #### Optional Grades 7-8 Reading Book We recommend The Good and the Beautiful Fungi Study by Molly Sanchez as extra reading for students in grades 7–8. This book can be purchased by going to goodandbeautiful.com/science and clicking on the Kingdoms and Classification unit link. The Good and the Beautiful Fungi Study by Molly Sanchez # Supplies Needed 000 This section is divided into supplies needed for **activities** and supplies needed for **experiments**. If you would prefer to watch the experiments instead of perform them, you can watch all the experiments at **goodandbeautiful.com/sciencevideos** or on the Good and Beautiful Homeschooling app. The activities, however, are not filmed. #### For Optional Use with Lessons 2, 5, 7 - High-quality compound microscope - Methylene solution - Glass slides and coverslips - Toothpicks - Clear tape - Eyedropper - Paper towels - We have tested and reviewed microscopes. Our top-recommended microscope is AmScope M150C 40x–1000x All-Metal Optical Glass Lenses Cordless LED Student Compound Microscope (monocular). You do not have to use our recommended microscope. #### Lesson 1 - Pencil or pen - Paper clip #### Lesson 2 - 2 pieces of thread, yarn, or rope about one foot long per child - Agar plates purchased online or 5 paper cups, plastic wrap, 5 rubber bands, ½ cup water, 2 tsp sugar, 2 tsp gelatin - Disposable gloves #### Lesson 3 - Permanent marker - 7 standard-sized disposable cups - Tape #### Lesson 4 - · Agar plates prepared in Lesson 2 - 4 cotton swabs #### Lesson 5 - 15–20 assorted office or household supplies, such as a paper clip, rubber band, pencil, sticky note, hair elastic, penny, bobby pin, eraser, staples, etc. - Cup of water from a stagnant pond or lake (optional) #### Lesson 6 - · 3 empty disposable water bottles - 3 balloons - Marker - 3 portions of ¼ c water each—two portions warm and one portion cold - 3 Tbsp active dry yeast - 1 Tbsp sugar - Bowl - Funnel - Spoon or whisk - · Game pawn, piece of cereal, or coin #### Lesson 7 - Shallow pie pan and tall glass filled with ½ inch of water each - Dry sponge - Straw - · Thin layer of onion (optional) #### Lesson 8 None #### Lesson 9 - Glue - 1 M&M® (or similar hard-shelled candy) for each child #### Lesson 10 - A pipe cleaner for each child - 10–15 beads for each child #### Lesson 11 None # Vocabulary **Instructions:** Cut out the vocabulary cards in this section. Place them on your science wall when prompted to do so in the lessons. Review the vocabulary words several times during this unit and, if desired, at various times throughout the school year. ## Organism any living thing that can move, grow, and reproduce; most need air, food, and water ## Microorganism an organism so small it can only be viewed with a microscope ### Cell the small, basic unit of living matter of which all organisms are made ## Gymnosperm a plant without flowers that produces seeds not covered by fruit ### Invertebrate a group of animals without a backbone or spine ### Vertebrate a group of animals with a backbone or spine ## Exoskeleton a skeleton located on the outside of a creature's body ## Introduction to Living Thing Help the children learn about the wondrous diversity of life as they discover the defining characteristics of all living things on Earth. Cut out the "Characteristics of Life Icons" cards from each child's student journal. #### **Activity Supplies:** - Pencil or pen - Paper clip #### Picture Activity Place the cut-out "Living Things" cards in front of the children. Read to the children. Point to each picture as you discuss it: Can you find anything this amoeba, mushroom, tree, red stag, and sea coral have in common? What differences do they have? Pause for response. It's probably much easier to find the differences, but they do have one main thing in common—they are alive! God has created a world that is teeming with life, most of which we can't even see! Point to the blob-like gray amoeba. If you were to collect a drop of water from a pond, there could be many amoebas within it, too small to see with your eye. This yellow sea coral is something else you can find in the water, but unlike the amoeba, it is actually an animal! God created all of the living beings on the planet with their own characteristics and purposes. In this unit you will learn about what is unique about each life form and what ties them all together. Save the cards to use later in this lesson. #### Science Wall: Vocabulary Words Place the vocabulary cards ORGANISM and MICROORGANISM on your science wall. Read and discuss the words and their definitions. #### Characteristics of Life Game Place the spinner page and each child's set of cut-out "Characteristics of Life Icons" cards in front of the children. Have each child pick a cut-out "Living Things" picture used in the previous activity to place in front of himself or herself. If there are more than five players, have the children work in teams. Read to the children: Living things have more in common than you might realize. Some scientists debate over what categorizes something as living vs. nonliving. However, there are eight commonly accepted attributes we will cover in this unit. We are going to play a game to learn about each one. The goal of the game is to collect all eight characteristics. Place the "Characteristics of Life Icons" cards near the children. Place the paper clip in the center of the spinner and put the pencil tip through it. Each of you will take turns spinning the paper clip and collecting the picture of the characteristic you land on. I will read a brief description of each characteristic as it is collected for the first time from the list on this page. If you land on a characteristic that has been read already, you will briefly describe that characteristic. If you have already collected the characteristic you land on, your turn is over. The first person to collect all eight can be declared the winner, or all players can try to beat a 10-minute timer. #### CHARACTERISTICS: ₹ Living things have DNA. Located within a cell, hereditary DNA is a tiny twisted strand of chemical molecules. It contains the instructions for how an organism looks and functions and is passed down when an organism reproduces. An insect's DNA tells it to grow wings or six legs, or to have the ability to glow at night. Living things have cells. All living things have either one or many cells—the building blocks of life. Some *microorganisms*, such as bacteria, fungi, and viruses, are made of one or a few cells. Humans are *organisms* with over 30 trillion cells! Living things reproduce. Reproduction is the process of living things creating new life. A mother and father cat create new life and pass down their DNA to their baby. This DNA tells the kitten's body to grow up into an adult cat. Living things grow and develop. A living thing grows larger and changes as it matures. Consider a frog. The tadpole grows larger and then develops into a frog. Living things need energy. In order to stay alive, organisms must consume food for energy. This is done in a variety of ways: some organisms eat other organisms, some produce their own food, and others break down dead material for food. A plant's DNA tells it to convert sunlight into energy so that it can make its own food. Living things have senses. Although some organisms have very limited senses, all are able to respond to stimuli in an environment. For example, earthworms don't have eyes, but they are able to sense vibrations and light. They can even taste some flavors through the nerves in their skin. Living things require homeostasis. As you sit during this lesson, your heart is beating a steady rhythm. You have internal balance or homeostasis. If a balloon suddenly popped nearby, it might surprise you, and your heart would beat more rapidly. After a time your heart would return to homeostasis and its steady rhythm. The beating of your heart is one example, but other body functions fluctuate and return to balance, such as body temperature, breathing, hormones, and emotions. Living things can move. At some stage in their lives, all living things move; flowers open to the sun, cheetahs run across the savanna, and sea sponges float about the ocean as polyps. #### Living and Nonliving Hunt Activity Read to the children: Everything around us is either living or nonliving. To explore this further, we are going to do a scavenger hunt. Have the children turn to the "Living and Nonliving Hunt" page in Lesson 1 of their student journals. Depending on the season and weather, this activity may be completed outside or inside. #### Lesson 1 Extension Have children grades 7–8 complete the self-directed Lesson 1 extension titled "DNA and Classification" in their student journals. Help the children understand and identify the levels of classification and the six kingdoms of life. #### Preparation: - Cut out the "Tiger Taxonomy" squares. - Write one of the following classification levels on each cup with a permanent marker: kingdom, phylum, class, order, family, genus, species. #### **Activity Supplies:** · Permanent marker - 7 standard-sized disposable cups - Tape #### Optional Read Aloud At any point in the lesson, you may read one of the books from the optional Read-Aloud Book Pack. Longer books may be split into more than one reading session. Taxonomy Trivia by The Good and the Beautiful Team is suggested with this lesson. Read to the children: Did you know that new species are discovered every year? A species is a group of animals that all share the same characteristics. Look at the Rice's blue whale in the picture below. Until recently the Rice's blue whale was believed to be one of the species of baleen whales. With further study scientists realized that this whale had differences in its skeleton that made it unique from other whales it had been grouped with. Why do we group animals into species? In this lesson we will discover the answer to that question and see how scientists determine what creatures should be grouped together. Systems of Organization Read to the children: Imagine you want to find a certain book at your public library. Would you walk down the aisles and read every single title to find it? No! You would use the library's system of organization to find the book more quickly. Libraries are organized by sections, such as adult, young adult, youth, nonfiction, and fiction. Within these sections books are given a number that tells you the subject of the book or are labeled with the author's last name and put in alphabetical order. The classification system used by libraries narrows down large categories into smaller ones, like the roots of a tree coming from the thick trunk and spreading out into smaller and smaller underground branches. Your public library holds thousands of books. <u>But did</u> you know there are about 8.7 million different kinds of living things on the earth that we know of, from flowers blooming in the sun to eagles soaring in the skies? Do you think it is important for them to be organized? Why do you think so? Carl Linnaeus created a system for classifying living things in the 1700s with only two kingdoms: plants and animals. In his time many new organisms were being discovered, and there was not a system for naming or classifying them. This meant that organisms were given very long names that were difficult to remember, and it was impossible to see how things were related. Thinking back to our library example, it was as if books were being put on shelves in a library randomly. It was difficult to ever find the book, or organism, needed. #### Classification Cups Activity Have the children turn to the "Taxonomy of Life" chart in Lesson 3 of their student journals. Read to the children: Look at all the different forms of life that God has created! This chart shows the classification, or grouping, of just a few organisms based on shared characteristics, similar to Linnaeus' system. Point to each of the six circles labeled "Kingdom." These six kingdoms are the first major grouping of organisms based on their cell and development types. Note: Some scientists organize creatures into five or seven kingdoms. We will study six kingdoms because that is the system most scientists use. Give the children the seven labeled cups. Kingdom is the first of seven levels of classification. This level is a large group that includes a variety of creatures. As you move down the levels, they gradually become more specific. Species is the last group and includes creatures with the same characteristics that are able to reproduce together. Starting with the cup labeled "Kingdom," see if you can stack the cups in order according to the diagram below. Have each child take a turn stacking them in the correct order with Kingdom at the bottom and the other levels of taxonomy inside the Kingdom cup. Tape a cut-out "Tiger Taxonomy" card to the outside of each correct cup. Have the children place them in a row in the correct order. Read to the children: Look at all the different creatures included on the cup labeled "Kingdom Animalia." Move down the row and look at the animals in each picture on the cups. Each classification level narrows down the creatures included until you reach the specific species. Have the children take turns stacking the cups in order again. If desired, have them try stacking the cups multiple times while being timed to see if they can get faster! If desired, keep the cups to practice with prior to each lesson or every other lesson. Read to the children: Now we will see this classification on the "Taxonomy of Life" chart. Find the "Kingdom Animalia" circle. See if you can follow the groupings down the "Taxonomy of Life" chart to find where tigers fit. #### HIERARCHY OF BIOLOGICAL CLASSIFICATION ### Tiger Taxonomy Kingdom Animalia Phylum Chordata Class Mammalia Order Carnivora Family Felidae Genus Panthera Species tigris ## Bacteria and Where They Are Found 2 The Eifuku chimneys are Located in Yellowstone National hydrothermal vents found deep Park in the USA, the Grand Prismatic Spring is 71 °C (160 °F). The color in the ocean that pump out water that is 103 °C (217 °F). The of the pool is a result of the bacteria bacteria living there enjoy the high that live in it. temperatures. FEW ER 4 The icy cold terrain of Antarctica The shore of the Great Salt Lake is is generally below 0 °C (32 °F), so salty that nothing grows except but the freezing temperature is no for the bacteria that eat the salt and hindrance for the bacteria that call give the water its purple color. it home. THAN ONE THIS SPECIES THIS SPECIES 6 uses methane gas to produce energy and is found in human intestines and helps converts it into carbon dioxide and water. with digestion. Some strains cause disease. DIFFERENCE DIFFERENCE Archaebacteria only live in extreme Eubacteria live everywhere on Earth. environments. PER CENT THIS SPECIES THIS SPECIES 8 is often unseen in the ocean until oil is is commonly seen as black and green present, then it appears to feed on the oil stains on rooftops. and reduce the amount in the ocean. DIFFERENCE DIFFERENCE Archaebacteria are simple Eubacteria are complex microorganisms. microorganisms. ### Marvelous Mushrooms ## Bleeding Teeth Fungus Found primarily in coniferous forests in the Pacific Northwest, this is one of the most unique mushrooms in the world. Dark red liquid oozes from small holes on its cap. ### The Giant Puffball The name of this mushroom fits its appearance perfectly. Generally the size of a soccer ball, this white orb-like mushroom can grow to be 1.5 meters (5 feet) wide and weigh 23 kilograms (50 pounds)! ### Amanita Mushroom The traditional storybook mushroom, this red-capped fungus is what many may think of when they picture mushrooms. ## Honey Mushroom The largest organism in the world is a specimen of honey mushroom that is 2,385 acres in area, which is about 1,350 soccer fields! The mushrooms you see above ground are only part of the organism. Underground is a vast network of root-like structures called mycelia. This mushroom is also interesting because bioluminescent bacteria living on its surface cause it to glow! ### Plantae Kingdom: # Gymnosperm and Angiosperm Help the children understand the differences between angiosperm and gymnosperm plants of the Plantae kingdom. #### Preparation: Cut out the numbers at the bottom of the "Seed Stories" page. #### **Activity Supplies:** None #### Art Observation Have the children observe the painting by Carl Frederik Aagaard included in this lesson. Read to the children: Can you find the plants growing on the rock? Would these plants be vascular or nonvascular? [nonvascular] Do you see the green trees and beautiful flowers? Would these plants be vascular or nonvascular? [vascular] Vascular plants are able to grow much taller than nonvascular plants. Why is this? [Vascular plants contain xylems inside their stems that transport water throughout the plants.] God created a variety of plants that bring great beauty and bounty to our world. Vascular plants are divided into two types known as angiosperms and gymnosperms. #### Angiosperm vs. Gymnosperm Read to the children: Have you ever bitten into a juicy grape and been surprised to find a seed inside? The grape plant is an angiosperm, which is a plant that has flowers and produces seeds inside a fruit. Gymnosperms, on the other hand, do not grow flowers, and their seeds are not encased in a fruit but open to the air. The seeds of the Norway spruce conifer tree can be found nestled between the scales, or the rounded, spiky parts that stick out and give the pine cone its shape. #### Science Wall: Vocabulary Words Place the vocabulary cards ANGIOSPERM and GYMNOSPERM on your science wall. Read and discuss the words and their definitions. #### Creature Spotlight: Redwood Read to the children: In a foggy forest on the coast of California, USA, grow trees so wide you can drive a car through their trunks. These coastal redwoods are also very tall. One in particular, given the name "Hyperion," reaches an astounding 116 m (380 ft) in the air and is the tallest tree in the world. Its exact location is kept a secret to protect it from too much attention. To reach their skyscraping heights, redwoods can grow 1–3 m (3–10 ft) every year for the first 100 years of their lives. As the longest living organisms on Earth, they can live for over 2,000 years! Are redwoods gymnosperms or angiosperms? Why? [Gymnosperms; they produce cones, not flowers.] Have the children turn to the "Taxonomy of Life" chart in Lesson 3 of their student journals and follow the path from Plantae Kingdom to the species called Sequoia sempervirens, the scientific name for the coastal redwood. #### Seed Stories Give the children the cut-out numbers. Remove the Seed Stories page and place it in front of the children. Read to the children: As you listen to each story below, place numbers 1–4 on the pictures on the "Seed Stories" page to put the story in order. When I finish each story, you will tell me if the seed I described is from a plant that is an angiosperm or gymnosperm. A pine cone containing a hidden seed falls from the top of a great evergreen tree to the forest floor. A squirrel comes along and grabs the cone, carrying it to its hidden stash. When it gets hungry, the furry squirrel opens the protective cone, and the seed falls out onto soft ground in a sunny meadow, where it begins to grow into a new tree. [3, 1, 4, 2; gymnosperm] A large seed with a thin covering falls from a ginkgo tree with fan-shaped leaves. It falls onto a sidewalk and rolls into a shallow crack. It tries to sprout and grow its roots, but there is not enough soil, and it is too hot on the sidewalk. The seed is not able to grow into a ginkgo tree. [4, 2, 1, 3; gymnosperm] A beautiful apple blossom blooms and is visited by a busy bee. Pollen on the bee's fuzzy legs rubs off on the apple blossom. The fertilized flower grows into an apple that falls to the ground when it is ripe. A bird comes and eats the apple before the seeds are able to sprout. [2, 4, 1, 3; angiosperm] A field of wheat ripples in the wind. A kernel is blown from its head and carried on the wind. It lands in a deserted patch of land full of weeds and thorns. When it begins to sprout, it is unable to grow because the surrounding weeds take all the water and block the sunlight from reaching the seed. [3, 2, 4, 1; angiosperm] #### Good Soil Read to the children: Did you notice that in the stories one of the seeds was able to sprout, and the others were not? Which seed was able to sprout? Whether a seed is an angiosperm or a gymnosperm, it needs the right soil conditions to sprout. The passage below from the 13th chapter of Matthew illustrates different types of soil. The seed represents the Word of God. This passage not only teaches us about good soil for plants, but it is also a parable for the soil of our hearts. Have the children take turns reading the verses, and then discuss the questions at the end of the section. - Behold, a sower went forth to sow; - 4: And when he sowed, some seeds fell by the way side, and the fowls came and devoured them up: - 5: Some fell upon stony places, where they had not much earth: and forthwith they sprung up, because they had no deepness of earth: - And when the sun was up, they were scorched; and because they had no root, they withered away. - 7: And some fell among thorns; and the thorns sprung up, and choked them: - 8: But other fell into good ground, and brought forth fruit ... **MATTHEW 13:3-8** - What are the four different types of seed conditions listed in the verses? [way side, stony places, thorns, and good ground] - What do you think would be considered good ground for a seed? [fertile soil, plenty of water, sunny location, etc.] - 3. How can we make our hearts a good place for the Word of God to take root? #### Sorting Seeds Read to the children: All vascular plants reproduce using seeds. However, the pollination process and type of seed created differs between angiosperms and gymnosperms. Angiosperms produce flowers that are pollinated primarily by insects. The seed develops enclosed in fruit. **Gymnosperms** produce seeds that are pollinated primarily by the wind. The seed develops without a covering. Have the children turn to the "Sorting Seeds" page in Lesson 8 of their student journals and follow the instructions. #### Lesson 8 Extension Have children grades 7–8 complete the self-directed Lesson 8 extension titled "Biodiversity" in their student journals. ## · Seed Stories · ## Animal Kingdom: Vertebrates (alergentia Help the children understand the characteristics of vertebrates in the Animalia kingdom. #### Preparation: - Cut out the "Animal Field Journal: Vertebrates" cards from each child's science journal. - Write the words "endothermic" and "ectothermic" on two separate slips of paper, one set for each child. #### **Activity Supplies:** - A pipe cleaner for each child - 10–15 beads for each child #### Complex Creatures Read to the children: In this unit we have seen a variety of living things, from basic, unicellular bacteria to towering trees. We have gradually learned about the simple to the complex. This wide range of complexity gives our earth diversity and connection. Each species is unique and needed, just like every person. Humans have the distinction of being the most complex living things on our planet. Unlike protists, we are able to learn and remember. Because we have a backbone and an endoskeleton that holds us up and helps move our muscles, we can run, jump, and dance, whereas a snail moves slowly across the ground. God has created all things to serve a unique purpose. Think of the unique talents that you have. What is something you do that benefits your family or community? Discuss this question with the children. Watch the video titled "Vertebrates: Complex Creatures" at goodandbeautiful.com/ sciencevideos or from the Good and Beautiful Homeschooling app. Discuss the following questions: - Animals display an astounding variety of abilities jumping, flying, swimming, changing color, regrowing limbs, etc. <u>If you could have any of these</u> abilities, which would you choose? - 2. Why do you think variety is important? - Backbone Beads Give each child a pipe cleaner and 10–15 beads. Read to the children: Stand up and place your hands on your back. <u>Can you feel your backbone?</u> Bend over and move side to side. Your backbone gives your body structure and allows you flexibility. Have the children place the beads on their pipe cleaner. A backbone is made up of two parts. The first is the spinal cord, which is represented by the pipe cleaner. This cord carries nerves that send important messages to and from your brain. It is important and needs to be protected by the second part of your backbone, the vertebrae bones, which are represented by the beads. Humans have 33 vertebrae stacked on top of each other like the beads on the pipe cleaner. Each bone is connected to muscle that allows it to twist and turn. Have the children move the pipe cleaner in different directions to show the flexibility of the backbone. #### Creature Spotlight: Southern Sea Otter Read to the children: Off the coast of California, USA, you might spot some of these marine vertebrates swimming, floating, or playing in the Pacific Ocean. They spend most of their time in the water, even sleeping while floating. To stay warm they have dense, waterproof fur that protects their bodies from the cold water. Have the children turn to the "Taxonomy of Life" chart in Lesson 3 of their student journals and follow the path from Kingdom Animalia to the species Enhydra lutris, the scientific name for Science Wall: Vocabulary Words the sea otter. Place the vocabulary cards ECTOTHERMIC and ENDOTHERMIC on your science wall. Read and discuss the words and their definitions. #### Vertebrate Diversity Place one set of the previously written words "ectothermic" and "endothermic" in front of each child. Read to the children: There are five classes of vertebrates: birds, mammals, reptiles, amphibians, and fish. While they all share the characteristic backbone, each class is unique and is either *ectothermic* or *endothermic*. Sea otters are endothermic because they are able to maintain their body temperature with thick protective fur. As I read about each class of vertebrates below, raise your ectothermic or endothermic card to show how you believe their body regulates heat. Review the vocabulary cards as needed. Birds: Covered in feathers that help maintain their body heat, birds are most distinct for their ability to fly. They are found on every continent of the world and include varieties like the penguin, ostrich, eagle, and hummingbird. [endothermic] Reptiles: Unlike birds, reptiles rely on their environments for warmth and must live primarily in locations where they have access to sunshine to warm up and shade to cool off. They have scaly skin and leathery eggs and include crocodiles, turtles, snakes, and lizards. [ectothermic] Mammals: Characterized primarily by the fact that they give birth to live young who feed on the mother's milk, these animals are found throughout the world. It may surprise you to learn that there are only about 5,000 species in this class. Some have fur to help them maintain their body heat, while others have large amounts of fat or even blubber. [endothermic] ### Animal Field Journal Key Animalia Arthropoda Insecta Coleoptera Lampyridae Photinus While many underwater creatures can produce their own light through bioluminescence, these small beetles are one of few on land to do so. On a summer night in warm climates, they will use these lights, created by a chemical reaction, to find a mate. Animalia Porifera Demospongiae Haplosclerida Petrosiidae Xestospongia This creature is called home to many animals and looks more like a rock than an animal. It eats by pumping the water around it through its walls and filtering out nutrients. With a width up to 2 meters (6.5 feet) across, these giants are capable of pumping, filtering, and cleaning a lot of water. Animalia Cnidaria Scuphozoa Semaeostomeae Cyaneidae Cyanea Glowing in the ocean is a creature with over a thousand tentacles that can grow to be up to 37 meters (120 feet) long! It lives in cold waters near the surface and dangles its tentacles below to catch its prey. Like others in its phylum, it has stinging barbs that can kill unsuspecting fish that swim too close. Animalia Echinodermata Echinoidea Echinoida Strongylocentrotidae Strongylocentrotus These spiny relatives of sea stars live in rocky, shallow water near the shore. Eating primarily algae and the base of kelp, these tiny creatures can have a big impact on water ecosystems. These invertebrates can eat away the bases of an entire kelp forest, but predators keep their population in check. Animalia Mollusca Gastropoda Stylommatophora Helicidae Helix A trail of slime follows in its wake as this invertebrate moves through the forest. Commonly called escargot, these small mollusks live in forests and feed on fungi and decaying plants. Snails create their shells in a spiral shape that gradually grows as the snail does. Animalia Annelida Clitellata Haplotaxida Lumbricidae Lumbricus Earthworms may be small, but they are one of the major contributors to the health of Earth's soil. As they move underground, they eat buried waste and recycle it into the soil as nutrients for plants and other organisms. There are over 7,000 different species of earthworms and they can be found on every continent except Antarctica. invertebrates Invertebrates #### World of Diversity Let all things be done decently and in order. 1 CORINTHIANS 14:40 Read the verse above to the children. Then read the following to the children: God created a world full of diversity to give it beauty and prosperity. We have been able to learn from the amazing creations to which He gave life and have preserved the vital natural systems around us by classifying, organizing, and ordering the living things on this planet. Not only are amazing scientific advances being made to benefit humans, but the beauty and diversity of the organisms around us lead to joy and wonder. By tracking and caring for our planet and its inhabitants, we will continue to enjoy the blessing of all God's creations into the future. Note: There is no grades 7–8 Lesson Extension for this lesson.