#  <br>  <br> Good and Beautiful MATH 4 ANSWER @゚ீKEY ®.? 

Good Geantiful

goodandbeautiful.com
© 2021 Jenny Phillips
All rights reserved. This document may be copied for use within your own family or homeschool group once each family has downloaded it directly from goodandbeautiful.com. The document may not be shared electronically in any way. The document may not be printed by

## Hexagonal Honeycombs

Starting at the
circled 3, use skip counting by 3 s to color in every third hexagon on the first honeycomb.

On the second honeycomb, start at the circled 6 and use skip counting by 6 s to color in every sixth hexagon.

| (1) | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{llllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{llllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ $\begin{array}{llllllllllllll}41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50\end{array}$ | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (61) $6 2 \longdiv { 6 3 } \quad 6 4 \longdiv { 6 5 } 6 6 \longdiv { 6 7 \longdiv { 6 8 } } 6 9 \quad 7 0$

 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $9 1 9 2 \longdiv { 9 3 } 9 4 \quad 9 5 \quad 9 6 \quad 9 7 \quad 9 8 \quad 9 9 1 0 0$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{lllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ 41424344454647484950 $\begin{array}{lllllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$ $\begin{array}{lllllllll}61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 \\ 70\end{array}$ $\begin{array}{llllllllllll}71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80\end{array}$ $\begin{array}{llllllllll}81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90\end{array}$ $9 1 \longdiv { 9 2 } 9 3 9 4 \longdiv { 9 5 } 9 6 9 7 \quad 9 8 \quad 9 9 \quad 1 0 0$



| 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ 21)22 $23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30$

 $41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50$ $5 1 \quad 5 2 \quad 5 3 \longdiv { 5 4 } 5 5 \quad 5 6 \quad 5 7 \quad 5 8 \quad 5 9 \quad 6 0$ 61 $6 2 \longdiv { 6 3 } 6 4 \quad 6 5 \quad 6 6 \quad 6 7 \quad 6 8 \quad 6 9 \quad 7 0$ $\begin{array}{llllllllllllll}71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80\end{array}$ $\begin{array}{lllllllllll}81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90\end{array}$ $\begin{array}{lllllllll}91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 \\ 100\end{array}$

Starting at the circled 9 , use skip counting by 9 s to color in every ninth hexagon on the third honeycomb.

Look at the numbers you colored in the last honeycomb. Which number pattern do they follow?
EVEN, EVEN, EVEN, EVEN


Матн 4 弟

## Lesson Proctice

I. Write a sequence by skip counting by 7 s .
$7, \underline{14}, \underline{21}, \underline{28}, \underline{35}, \underline{42}, \underline{49}, \underline{56}, \underline{63}$
2. Circle the correct pattern for the sequence above.
even, even, even, even

3. Fill in the missing numbers for the following sequence:

$$
8,16,24,32,40,48
$$

5. Circle the numbers on the number lines that follow the pattern of skip counting by 4 s.

$$
56,64,72, \underline{80}, 88
$$

4. Write the minutes around the outside of the clock by skip counting by 5 s. The first two have been done for you.



## Review

I. On the calendar below, skip count by 5 s aloud and circle each number you say.

2. On the calendar above, skip count by $6 s$ and draw an $X$ on each of the numbers you say.
3. Which number has both a circle and an $X$ ? 30
4. Complete the problems.

| 259 |
| ---: |
| +137 |
| 396 |

$$
\begin{array}{r}
885 \\
-467 \\
\hline 418
\end{array}
$$

5. What is the eighth month of the year? $\qquad$
6. Insert greater than, less than, or equal to symbols (>, <, =) in the circles to show comparisons.

$$
\begin{aligned}
& 320 \bigodot 3021,010 \bigodot 1,10089<98 \\
& 4+6+9 \circlearrowright 3 \times 5 \quad 3 \times 9 \circlearrowright 8+3+7
\end{aligned}
$$

7. Complete the multiplication problems.



People lose me more than any other item. What am I? $\frac{A}{8} \quad \frac{T}{7} \frac{V}{22} \quad \frac{R}{9} \frac{E}{14} \frac{M}{25} \frac{0}{3} \frac{T}{12} \frac{E}{18}$


MATH 4

## Review

I. Write a fact family for each set of numbers. Each fact family has two addition equations and two subtraction equations.

2. Circle the numbers on the number lines that follow the pattern of skip counting by 4 s .

3. On the number lines above, put an $X$ on the numbers that follow the pattern of skip counting by 3 s . Which numbers have both a circle and an $X$ ?
$\qquad$
4. Your mom is trying to decide if she wants to make pumpkin pie or apple pie for dessert on Thanksgiving. You volunteer to ask everyone in your entire family which type of pie he or she prefers. You talk to all 23 people who are coming. If I7 of them choose apple pie and the rest choose pumpkin pie, how many people choose pumpkin pie? Show your work in the box to the right.


OR $\quad 23-17=6$


Multiplication patterns follow similar rules to addition patterns. While multiplication is adding equal groups together to find the total amount, skip counting is a number pattern with multiples. A multiple of a number is the product of a number and an integer.

> Multiplication Rules:
> Even $\times$ Even $=$ Even
> Even $\times$ Odd $=$ Even
> Odd $\times$ Odd $=$ Odd

Notice that any number multiplied by an even number will equal an even number. Multiples of 4 follow two of the multiplication rules listed above. Each multiple of 4 is an even number because 4 is an even number

Even $\times$ Even $=$ Even \& Even $\times$ Odd $=$ Even

| Multiples <br> of 4 | Multiplication <br> Problem | Rule |
| :---: | :---: | :---: |
| 4 | $4 \times 1$ | even $\times$ odd $=$ even |
| 8 | $4 \times 2$ | even $\times$ even $=$ even |
| 12 | $4 \times 3$ | even $\times$ odd $=$ even |
| 16 | $4 \times 4$ | even $\times$ even $=$ even |
| 20 | $4 \times 5$ | even $\times$ odd $=$ even |
| 24 | $4 \times 6$ | even $\times$ even $=$ even |
| 28 | $4 \times 7$ | even $\times$ odd $=$ even |

## Lesson Practice

I. Put a box around the factors and find the product.

2. Use the commutative property to rewrite this
3. Write a multiplication equation for each array.

$\qquad$
$\qquad$ $=$ $\qquad$

$\qquad$ $\times 9$ $=27$ $\qquad$

$\qquad$
$\qquad$ $\times 8$
$\qquad$ $=64$
4. Write a multiplication problem to represent multiplying groups of objects.
$\qquad$
$\qquad$
$\qquad$ $=$ $\qquad$ 20
 $\square$

0 Jenny Phillip

## Read with your parent or teacher

5. Complete the chart

| Multiples <br> of 7 | Multiplication <br> Problem | Rule |
| :---: | :---: | :---: |
| 7 | $7 \times 1$ | odd $\times$ odd $=$ odd |
| 14 | $7 \times 2$ | odd $\times$ even $=$ even |
| 21 | $7 \times 3$ | odd $\times$ odd $=$ odd |
| 28 | $7 \times 4$ | odd $\times$ even $=$ even |
| 35 | $7 \times 5$ | odd $\times$ odd $=$ odd |
| 42 | $7 \times 6$ | odd $\times$ even $=$ even |
| 49 | $7 \times 7$ | odd $\times$ odd $=$ odd |

6. Draw an array of squares for the multiplication problem $4 \times 6$. How many squares did you draw? 24



## Multiplication Mastery

Memorizing multiplication facts is an essential part of this course. Knowing the answers to multiplication problems instantly makes many math concepts much easier to teach and to learn.

You will work on memorizing Set A and Set B during this first unit. You will use the Multiplication Mastery Chart on page 395 in the back of the book to keep track of your progress. The course Mastery Chart on page 395 in the back of the book to keep track of your progress. The course
will tell you when to use the chart. In most lessons the course book will instruct you to work for 10 minutes or more on multiplication facts. You will be practicing Set A in this lesson. Ask your parent or teacher which resource from page 5 you will use to practice the facts.
If you already have these multiplication facts memorized, you do not need to complete the 10 minutes of multiplication facts practice, but you will still write the answers to all the problems in the "Multiplication Fact Practice" boxes in each lesson.
In addition to the facts in Set A, you will also practice the $0 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$, and 11 s facts in the colored boxes in each review section.
$\triangleleft$ Multiplication Fact Practice $\diamond$
Practice Set A for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section.

| 3 | 1 | 8 | 5 | 8 | 9 | 5 | 4 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\times 3$ |  |  |  |  |  |  |  |  |
| 9 | $\frac{\times 6}{6}$ | $\frac{\times 4}{32}$ | $\frac{\times 3}{15}$ | $\frac{\times 8}{64}$ | $\frac{\times 10}{90}$ | $\frac{\times 5}{25}$ | $\frac{\times 6}{24}$ | $\frac{\times 8}{32}$ |
| 6 | 10 | 6 | 4 | 3 | 9 | 6 | 10 | 3 |
| $\frac{6}{36}$ | $\frac{\times 7}{70}$ | $\frac{\times 4}{24}$ | $\frac{\times 0}{0}$ | $\frac{\times 5}{15}$ | $\frac{\times 9}{81}$ | $\frac{\times 1}{6}$ | $\frac{\times 9}{90}$ | $\frac{\times 4}{12}$ |

- 



MATH $4 \Theta$


The value of each digit can be found by multiplying the digit and its place value.


## PLACE VALUE



## Lesson Practice

1. Read the following numbers aloud to your parent or teacher.
375,000
16,400
8,650,108

65,240,312
2. Write commas in the following numbers. The first one has been done for you.
4,895,217
21,487
5,790
355,0 18
541,235,0 17
3. Write the missing labels on the place value chart. Then write this number at the bottom of the chart: $214,786,345$
6. Which digit in $68,741,024$ is in the ten thousands place? $\qquad$ 4

Multiplication Fact Practice $\diamond$
Practice Set A for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section.



матн 4 ©

5. Draw lines to divide each shape into the fractional amount listed.

6. Divide and shade the shapes to show the indicated fractions.

7. What fraction of the letters in the word MISSISSIPPI are the letter I?
8. What fraction of your family is younger than 14? $\qquad$
Read with your parent or teacher
You are now ready to take your first Multiplication Mastery Assessment. Have your parent or teacher quiz you on Multiplication Set A using the Multiplication Mastery Chart on page 395 .

Parent/Teacher: Indicate which facts from Set A the student has mastered in the "Mastered" column on page 395. The student will continue to review and practice these facts throughout the course
 mystery number


* I am more than 2,000,000
- I am less than 2,500,000
- I have a 3 in the hundred thousands place.
- Rounded to the nearest hundred thousand, I'm 2,300,000
- I am not inside the hexagon.
Who am I? $\qquad$ -

What is the name of the shape the mystery number is in?
$\qquad$

## 48 <br> 

© Complete Mental Math Map Mysteries. © There is no video for this lesson.
Number Search


Write each number using digits, and then circle it in the puzzle below. Don't forget the commas! Hint: Numbers are vertical and horizontal only
a. thirty-six thousand, four hundred eighty-two
b. fifty-seven million, twenty-eight thousand, two hundred fifty-nine
c. two million, eight hundred nineteen thousand, six hundred seven
d. fifty-one thousand, four hundred twenty-six
e. thirty-two thousand, four hundred ninety-five
f. nine million, six hundred five thousand, one hundred fifty-three g. four million, two hundred forty-eight thousand, eight hundred thirteen 4,248,813
h. forty-one million, four hundred fifty-eight thousand, two hundred fifty-eight 41,458,258

| 5 | 1 | 9 | 7 | 8 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 4 | 2 | 4 | 8 | 8 | 1 | 3 |
| 6 | 4 | 8 | 2 | 1 | 3 | 4 | 9 |
| 0 | 5 | 1 | 4 | 2 | 6 | 5 | 3 |
| 5 | 8 | 9 | 0 | 3 | 4 | 8 | 2 |
| 1 | 5 | 6 | 7 | 9 | 8 | 2 | 4 |
| 5 | 7 | 0 | 2 | 8 | 2 | 5 | 9 |
| 3 | 2 | 7 | 1 | 5 | 3 | 8 | 5 |

36,482 57,028,259 2,819.607 32,495 9.605.153


1. Label the inch scale below with the missing half-inch and quarter-inch measurements.

2. Measure this line segment to the nearest quarter inch.

3. How long is the lollipop?


## ] Additional Proctice

1. Draw a line segment that is $2 \frac{3}{4}$ inches long.
2. Measure the following line segment to the nearest inch.

3. Find an object in your house that measures between 3 inches and 4 inches. Show it to your parent or teacher

## ADDITION. SUBTRACTION G WRITING NUMBERS (LESSONS 19 \& 20)

1. Complete each problem


かんNGMT

2. Write the following numbers using digits.

Twenty-four million, six hundred seventy-two thousand, nine hundred thirty-one 24.672 .931

Seven billion, three hundred nineteen million, nine hundred forty-six thousand, two hundred four $\qquad$
3. Write the following number using words

357,618,452
three hundred fifty-seven million, six hundred eighteen thousand, four hundred fifty-two


1. How many cacao beans are there? Write the number in word form. thirty-five million, four hundred seventy-six thousand,
nine hundred forty-five

2. How many more bottles of milk are there than rubber ducks?

و


MATH 4

| 134 | 362 | 493 | 271 | 421 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \\ \times \quad 2 \\ \hline\end{array}$ | $\begin{array}{r} \\ \times \quad 5 \\ \hline\end{array}$ | $\begin{array}{r}4 \\ \times \quad 4 \\ \hline\end{array}$ | $\times 3$ | $\times 2$ |
| 268 | 1,810 | 1,972 | 813 | 842 |
| 1,204 | 3,641 |  | 5,432 | 7,260 |
| + 2 | $\begin{array}{r}3.64 \\ \times \quad 4 \\ \hline\end{array}$ |  | $\begin{array}{r}5.432 \\ \times \quad 5 \\ \hline 27.100\end{array}$ | $\begin{array}{r}7.3 \\ \times \quad 3 \\ \hline 1.780\end{array}$ |
| 2,408 | 14,564 |  | 27,160 | 21,780 |

$\xrightarrow[\text { Right }]{\substack{\text { ANGLES } \\ \text { (Lesson 13) }}}$

Look at each angle measurement and match it with the angle type. Some angle types will match more than one measurement.


Label each clock with the type of angle formed by its hands.


Obtuse
ELAPSED TIME (LESSONS 18 \& 25)

1. At 7:24 AM you started your math lesson. At 8:48 AM you finished the last problem. How long did the lesson take you to complete?

11:19 AM
2. Next, you started working on your science project. You started at 9:12 AM, and it took 2 hours and 7 minutes to complete. What time did you finish your science project?
3. Mary and her family are driving from Kansas to Colorado. They leave at 7:35 AM and arrive at II:23 AM. How long did the drive take?

4. Takeshi ran in a race for a local charity. It took him 2 hours and 27 minutes to complete the race, and he finished at $4: 38$ PM. What time did the race start?

## $\sum$ Additional Practice

Fill in the missing start and end times for each flight. Show your work on a separate piece of paper.

| Destination | Start Time | Flight Duration | End Time |
| :---: | :---: | :---: | :---: |
| Hamburg, <br> Germany | $8: 31$ AM | 3 hours 13 minutes | $11: 44 \mathrm{PM}$ |
| Vancouver, <br> Canada | $2: 36 \mathrm{PM}$ | 7 hours 39 minutes | $10: 15 \mathrm{PM}$ |
| Nairobi, <br> Kenya | $1: 50 \mathrm{PM}$ | 2 hours 52 minutes | $4: 42 \mathrm{PM}$ |
| Nong Kai, <br> Thailand | $1: 47 \mathrm{AM}$ | 8 hours 24 minutes | $10: 11 \mathrm{AM}$ |
| Buenos Aires, <br> Argentina | $5: 57 \mathrm{PM}$ | 2 hours 42 minutes | $8: 39 \mathrm{PM}$ |

## MATH 4

## Z PLACE VALUE \& ROUNDING

1. Round each number below to the place values indicated

|  | Ten Thousands | Millions | Millions |
| :---: | :---: | :---: | :---: |
| 51,487,354 | 51 | 51 | 50,000,000 |
| 88,274,65 | 88,270,000 | 88,000,000 | 90,000 |
| 37,623,013 | 37,620,000 | 38,000,00 | 40,000,0 |
| 5,378,6 | 15,380,0 | 15,000,0 |  |

2. Match each number with its value rounded to the nearest million.


## $\cdots$

3. Circle the digit in the thousands place. Put a box around the digit in the ten millions place. Underline the digit in the hundred thousands place. Round the number to the hundred millions place.

$300,000,000$

4. Write the missing labels on the place value chart. Then write this number at the bottom of the chart: $841,067,247$

5. Round $37,691,452$ to the nearest ten million
6. Round $7,121,547$ to the nearest hundred thousand.
7. Write the place value of each red digit.

271,684,025
ten millions

2. Answer the questions by writing the names of the polygons shown above.

Which polygon has right angles? $\qquad$

Which polygon has only acute angles? $\qquad$

Which polygon has four sets of parallel lines? $\qquad$ octagon

Which polygons are left? pentagon and hexagon

## $\therefore$ Additional Practice

1. Draw a line from each polygon to its name.

2. Use the clues to identify the mystery letter.



#### Abstract

I have no oblique line segments.


I have only straight line segments.
I have a set of parallel line segments.
I have a set of perpendicular line segments.
I have two horizontal line segments and one vertical line segment.
Which letter am I?

- Jenny Phillips

风

## MATH 4 @

## COMPARE. ORDER \& ESTIMATE

 NUMBERS (LESSONS 22 G 24)1. Grace completed the problem below. Round both numbers to the nearest ten thousand and estimate the answer. Based on your estimation, is Grace's answer likely right or wrong?

$$
913413
$$

$$
\begin{array}{r}
\$ \not D \$, 849 \\
-344,917 \\
\hline 690,432
\end{array} \quad \begin{array}{r}
840,000 \\
\hline 500,000
\end{array} \quad \text { likely wrong }
$$

2. Order the numbers below from greatest (on top) to least.

| $347,287,104$ | $347,841,358$ |
| :---: | :---: |
| $347,841,358$ | $347,764,020$ |
| $347,231,985$ | $347,287,104$ |
| $347,764,020$ | $347,234,765$ |
| $347,234,765$ | $347,231,985$ |

## Addition al Practice

1. Compare the two numbers and fill in the $<,>$, or $=$ symbol.

| $39,715,624<39,717,842$ | $2,629.374<2,629.719$ |
| :---: | :---: |
| $84,617.619>84,617,270$ | $492.726,311<492,746,997$ |
| $2,674,824>677.917$ | $3.374 .035<21,379.674$ |

2. Round to the nearest hundred thousand and estimate the sum.

2,600,000
$2,300,000$
$+3,900,000$

FRACTIONS \& MIXED NUMBERS (LESSONS 15 \& 21)

1. Plot and label the following mixed numbers and fraction on the number line.


$$
A=2 \frac{3}{6} \quad B=1 \frac{5}{6} \quad C=\frac{1}{6}
$$

2. Divide and shade each shape to match the fraction listed.

3. Draw a picture to represent the mixed number $4 \frac{4}{6}$.

4. Write the location of each point shown on the number line.

5. Draw a picture to represent the mixed number $2 \frac{1}{4}$.


6. List the composite numbers you found above in order from least to greatest. Then circle all the odd composite numbers listed below.

7. Complete each division problem on scratch paper.

8. Ralph and Ernesto are collecting rocks for a rock collection. Today at the park, they found 4 black rocks and 6 shiny multicolored rocks. What fraction of their rock collection is made up of black rocks?


| Targeted Multiplication ©f Practice any problems you missed in your Set D quiz in Lesson 49. Then complete the problems in thisFection. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 4 | 12 | 7 | 8 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| + $\times 36$ | + 8 | $\begin{array}{r}12 \\ \times \quad 8 \\ \hline 96\end{array}$ | $\frac{\times 3}{21}$ | + 6 | $\begin{array}{r} \times 9 \\ \hline 81 \end{array}$ | $\begin{array}{r} 4 \\ \times \quad 4 \\ \hline 48 \end{array}$ | $\begin{array}{r} \times 11 \\ \hline 121 \end{array}$ | $\begin{array}{r} \times \quad 6 \\ \hline 72 \end{array}$ | $\begin{array}{r} \times 12 \\ \hline 144 \end{array}$ | $\begin{array}{r} \times \quad 5 \\ \hline 60 \end{array}$ | $\begin{array}{r} 7 \\ \times 84 \end{array}$ | $\begin{array}{r} \times \quad 9 \\ \hline 108 \end{array}$ |
| 9 | 6 | 11 | 3 | 5 | 5 | 4 | 7 | 2 | 6 | 3 | 8 | 6 |
| $\begin{array}{r}\text { + } 12 \\ \hline 108\end{array}$ | $\begin{array}{r}6 \\ \times 3 \\ \hline 18\end{array}$ | +12 | $\begin{array}{r} \\ \times 3 \\ \hline 9\end{array}$ | + 12 | + 7 | + 12 | $\times 12$ <br> 84 | + 12 <br> 24 | $\begin{array}{r} \\ \times 7 \\ \hline 42\end{array}$ | + 12 <br> 36 | + 12 | $\begin{array}{r} \times 12 \\ \hline 72 \end{array}$ |

MATH 4

## Better Butterflies <br> Find the missing factor on each butterfly for the number at the top of the column. Use your multiplication facts or long division on scratch paper, if necessary.

Note: Not every factor is shown for each number.


Math 4 Answer Key

## Lesson Practice

I. Find the lengths of the missing sides. Then find the perimeter of each irregular shape.

$\mathrm{A}=\frac{8}{\mathrm{ft}} \mathrm{ft}$
Perimeter $=50 \mathrm{ft}$
2. Find the area of each irregular shape by dividing it into smaller shapes, finding the area of each shape, and adding those areas together. The first shape has been divided for you.



## Review

I. Circle the fraction that is not in simplest form and reduce it.

$$
\frac{3}{4} \quad \frac{1}{15} \quad \frac{2}{3} \quad \frac{2}{8} \quad \frac{1}{2} \quad \frac{3}{4}
$$

2. Reduce each fraction to its simplest form.

$$
\begin{aligned}
& \text { Remember, you may need to divide more than once. } \\
& \frac{3}{9} \quad \frac{1}{3} \quad \frac{4}{12}
\end{aligned} \frac{1}{3} \quad \frac{2}{8} \quad \frac{1}{4} \quad \frac{5}{15} \quad \frac{1}{3}
$$

3. Find a common denominator to add or subtract the fractions.

$$
\begin{aligned}
& \frac{\not X^{4}}{\not Z 12}+\frac{3}{12}=\frac{7}{12} \quad \frac{12}{48}+\frac{\not X_{6}}{\not Z 48}=\frac{18}{48} \quad \frac{\not \partial 15}{\not X 20}+\frac{2}{20}=\frac{17}{20} \\
& \frac{9}{15}-\frac{\not 26}{5 / 515}=\frac{3}{15} \quad \frac{16}{24}-\frac{\not 28}{\not 824}=\frac{8}{24} \quad \frac{5}{8}-\frac{\not x^{4}}{\not 28}=\frac{1}{8}
\end{aligned}
$$

4. Write all the multiples of 6 between 24 and 66 .

$$
24,30,36,42,48,54,60,66
$$

5. Write the measurement of each clockwise turn in degrees.


$180^{\circ}$

$270^{\circ}$
6. Which geometric transformation (translation, rotation, or reflection) needs to happen to move the blue triangle directly on top of the green triangle?
rotation

7. Complete each problem. Use scratch paper if necessary.
$2 \longdiv { 1 3 6 }$
$7 \longdiv { 2 3 8 }$
$4 \longdiv { 2 5 2 }$
$9 \longdiv { 5 1 3 }$
