$0: \%$

 Good and Beautiful MATH 4 ANSWER ๕KEY \%.

Good Beautiful

goodandbeautiful.com
© 2021 Jenny Phillips
All rights reserved. This book may be printed or copied for use within your home or immediate family once it has been downloaded directly from goodandbeautiful.com by the person who will be using it. This file may not be shared electronically or posted on the internet. Copies that have been printed at home or at a printing company may not be resold.

Hexagonal Honeycombs

Starting at the
circled 3, use skip counting by 3 s to color in every third hexagon on the first honeycomb.

On the second honeycomb, start at the circled 6 and use skip counting by 6 s to color in every sixth hexagon.

1	2	3	4	5	6	7	8	9	10												
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		11	12	13	14	15	16	17	18	19	20
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{lllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ $\begin{array}{lllllllllllll}41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50\end{array}$ $\begin{array}{lllllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$ (61) $6 2 \longdiv { 6 3 } 6 4 \longdiv { 6 5 } 6 6 \quad 6 7 \longdiv { 6 8 \quad 6 9 7 0 }$ $\begin{array}{llllllllllllllll}71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80\end{array}$	81	82	83	84	85	86	87	88	89	90
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$9 1 9 2 \longdiv { 9 3 } 9 4 \longdiv { 9 5 } 9 6 9 7 9 8 \quad 9 9 1 0 0$										

$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{lllllllllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50\end{array}$ $\begin{array}{llllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$ | 61 |
| :---: |
| $6 2 \quad 6 3 \quad 6 4 \quad 6 5 \longdiv { 6 6 } 6 7 \quad 6 8 \quad 6 9 \quad 7 0$ | $\begin{array}{lllllllllll}71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80\end{array}$ $\begin{array}{lllllllllll}81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90\end{array}$ $9 1 9 2 \quad 9 3 9 4 \quad 9 5 \longdiv { 9 6 } 9 7 \quad 9 8 \quad 9 9 \quad 1 0 0$

Starting at the circled 9 , use skip counting by 9 s to color in every ninth hexagon on the third honeycomb.

Look at the numbers you colored in the last honeycomb. Which number pattern do they follow?
EVEN, EVEN, EVEN, EVEN

матн 4 ©
Lesson Practice
I. Write a sequence by skip counting by 7 s.
5. Circle the numbers on the number lines that follow the pattern of skip counting by 4 s .
$7, \underline{14}, \underline{21}, \underline{28}, \underline{35}, \underline{42}, \underline{49}, \underline{56}, \underline{63}$
2. Circle the correct pattern for the sequence above.

EVEN, EVEN, EVEN, EVEN

3. Fill in the missing numbers for the following sequence:

$$
8, \underline{16}, \underline{24}, 32,40, \underline{48}
$$

$$
56,64,72,80,88
$$

4. Write the minutes around the outside of the clock by skip counting by 5 s. The first two have been done for you.

MATH 4

Review

I. On the centimeter side, skip count by 3 s and circle the numbers. On the inch side, skip count by $2 s$ and circle the numbers.

2. You and your best friend are each baking cupcakes to sell together this weekend at the farmers market. You baked 36 strawberry cream cupcakes, and your best friend baked 48 double chocolate cupcakes. How many cupcakes will you have altogether to sell this weekend? Show your work in the box to the right.

3. You plan to sell each cupcake for $\$ 4$. Continue this skip counting number pattern to determine how much money you will have after selling 13 cupcakes.
$\$ 4, \$ 8, \underline{\$ 12}, \underline{\$ 16}, \underline{\$ 20}, \underline{\$ 24}, \underline{\$ 28}, \underline{\$ 32}, \underline{\$ 36}, \underline{\$ 40}, \underline{\$ 44}, \$ 48, \$ 52$
4. On Saturday you and your friend added up all the money you made. After paying your moms back for groceries to make the cupcakes, you had $\$ 47.24$ and your friend had $\$ 54.47$. How much money did you and your friend make together?

$$
\$ 47.24
$$

$\$ 54.47$
$+\$ 54.47$

5. Label the hours on the clock from I to 12 , and then draw the hour and minute hands to show $9: 15$.

6. Circle the even numbers and cross out the odd.

7. Complete the multiplication problems.

$$
\begin{array}{r}
2 \\
\times \quad 4 \\
\times \quad 6 \\
\hline 18 \\
\hline 2 \\
\hline 2 \\
\times 5 \\
\hline 10 \\
\hline 52 \\
\hline 16
\end{array} \begin{array}{r}
2 \\
\times \quad 3 \\
\hline 4
\end{array}
$$

Review

I. On the calendar below, skip count by 5 s aloud and circle each number you say.

2. On the calendar above, skip count by $6 s$ and draw an X on each of the numbers you say.
3. Which number has both a circle and an X ? 30
4. Complete the problems.

259
+137
396
---:
-467
418

$$
\begin{array}{r}
5 \\
\times 1 \\
\hline 5 \\
\hline 10 \\
\hline 14 \\
\hline 14 \\
\hline
\end{array} \begin{array}{r}
0 \\
\times \quad 8 \\
8
\end{array} \frac{1}{8} \times \frac{4}{5} \begin{aligned}
& 5 \\
& \hline 0
\end{aligned}
$$

People lose me more than any other item. What am I?

18
MATH 4

Review

I. Write a fact family for each set of numbers. Each fact family has two addition equations and two subtraction equations.

2. Circle the numbers on the number lines that follow the pattern of skip counting by 4 s .

3. On the number lines above, put an X on the numbers that follow the pattern of skip counting by 3 s . Which numbers have both a circle and an X ?
\qquad
4. Your mom is trying to decide if she wants to make pumpkin pie or apple pie for dessert on Thanksgiving. You volunteer to ask everyone in your entire family which type of pie he or she prefers. You talk to all 23 people who are coming. If I7 of them choose apple pie and the rest choose pumpkin pie, how many people choose pumpkin pie? Show your work in the box to the right.

OR $\quad 23-17=6$

Multiplication patterns follow similar rules to addition patterns. While multiplication is adding equal groups together to find the total amount, skip counting is a number pattern with multiples. A multiple of a number is the product of a number and an integer

> Multiplication Rules:
> Even \times Even $=$ Even
> Even \times Odd $=$ Even
> Odd \times Odd $=$ Odd

Notice that any number multiplied by an even number will equal an even number. Multiples of 4 follow two of the multiplication rules listed above. Each multiple of 4 is an even number because 4 is an even number.

Even \times Even $=$ Even $\&$ Even \times Odd $=$ Even

Multiples of 4	Multiplication Problem	Rule
4	4×1	even \times odd $=$ even
8	4×2	even \times even $=$ even
12	4×3	even \times odd $=$ even
16	4×4	even \times even $=$ even
20	4×5	even \times odd $=$ even
24	4×6	even \times even $=$ even
28	4×7	even \times odd $=$ even

3. Write a multiplication equation for each array.

\qquad $\times 3$
\qquad $=$ \qquad

\qquad \times \qquad $=27$ \qquad

\qquad
\qquad $\times 8$
\qquad $=64$
4. Write a multiplication problem to represent multiplying groups of objects.
\qquad

\qquad
\qquad $=$ \qquad 20

Jenny Phillip

Read with your parent or teacher

5. Complete the chart

Multiples of 7	Multiplication Problem	Rule
7	7×1	odd \times odd $=$ odd
14	7×2	odd \times even $=$ even
21	7×3	odd \times odd $=$ odd
28	7×4	odd \times even $=$ even
35	7×5	odd \times odd $=$ odd
42	7×6	odd \times even $=$ even
49	7×7	odd \times odd $=$ odd

6. Draw an array of squares for the multiplication problem 4×6. How many squares did you draw? 24

Multiplication Mastery

Memorizing multiplication facts is an essential part of this course. Knowing the answers to multiplication problems instantly makes many math concepts much easier to teach and to learn.

You will work on memorizing Set A and Set B during this first unit. You will use the Multiplication Mastery Chart on page 395 in the back of the book to keep track of your progress. The course will tell you when to use the chart. In most lessons the course book will instruct you to work for 10 minutes or more on multiplication facts. You will be practicing Set A in this lesson. Ask your parent or teacher which resource from page 5 you will use to practice the facts.
If you already have these multiplication facts memorized, you do not need to complete the 10 minutes of multiplication facts practice, but you will still write the answers to all the problems in the "Multiplication Fact Practice" boxes in each lesson.
In addition to the facts in Set A, you will also practice the $0 s, 1 s, 10 s$, and 11 s facts in the colored boxes in each review section.

\triangleleft Multiplication Fact Practice \diamond

Practice Set A for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section.

MATH 4

The value of each digit can be found by multiplying the digit and its place value.

PLACE VALUE

Lesson Practice

1. Read the following numbers aloud to your parent or teacher.
375,000
16,400
8,650,108

65,240,312
2. Write commas in the following numbers. The first one has been done for you.
4,895,217
21,487
5,790
355,0 18
541,235,0 17
3. Write the missing labels on the place value chart. Then write this number at the bottom of the chart: $214,786,345$
6. Which digit in $68,741,024$ is in the ten thousands place? \qquad m

матн 4 ©

Math 4 Answer Key
7. Change these addition problems to multiplication problems and find the products.
$4+4+4+4 \quad 7+7+7$
$4 \times 4=16$
$3 \times 7=21$
8. Draw an array for the division equation.
$20 \div 4=5$

9. Write a division equation for this array.

$27 \div 3=9$ $27 \div 9=3$

IO. Complete each problem.

359	628	\$ 45.95	\$ 72.65
147	- 467	+\$35.44	-\$ 48.24
506	161	\$ 81.39	\$ 24.4

II. Label the hours on the clock from I to 12 , and then draw the hour and minute hands to show 6:44.

\diamond Multiplication Fact Practice \diamond

Practice Set A for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section

$$
\left.\begin{array}{rrrrrrrrr}
3 & 1 & 8 & 5 & 8 & 2 & 5 & 4 & 1
\end{array}\right) 5
$$

4. Complete each problem.
 Lrops in order to sell them for a higher price.Li Weis neighbor produced 12 tons of rice, and together they had 25 tons to sell. How many tons of the box below.

\checkmark Multiplication Fact Practice \diamond

Practice Set A for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section.	5	3	6	3	1	5	8
	$\times 5$	$\times 5$	+ 4	$\begin{array}{r}3 \\ \times \\ \hline\end{array}$	$\times 6$	$\times 3$	$\begin{array}{r}8 \\ \times 4 \\ \hline\end{array}$
	25	15	24	9	6	15	32
	10	6	6	3	8	9	4
	$\times 7$	+1	+ 6	- 5	+8	+ 9	$\times 6$
	70	6	36	15	64	81	24

Use the street map to answer the questions.
I. Are the streets lines or line segments? Why? Hint: Review the definitions in the mini lesson.

Line segments. They have two end points.
2. What is the name of one street running vertically?

Answers may vary. Example: 1st St.
3. What is the name of one street running horizontally?
Answers may vary. Example: Jefferson Ave.
4. What is the name of one street running in an oblique direction?
Answers may vary. Example: Center Blvd
5. What are the names of two streets that are parallel to each other?
Answers may vary. Example: Washington Ave.
and Hamilton Ave.
6. What are the names of two streets that are perpendicular to each other?
Answers may vary. Example: Madison Ave. and
7. What are the names of two streets that intersect but are not perpendicular?
Answers may vary. Example: Adams Ave. and Main St.
Review
8. Draw a line segment.

9. Draw a pair of horizontal parallel lines.

IO. Draw a pair of oblique intersecting lines.

II. Draw a pair of perpendicular lines.

12. Draw a pair of vertical parallel lines.

I. Write the following numbers using words.

4. Write the following numbers using digits.
sixty-seven
fourteen

67
14
904

eighty-one thousand, six hundred thirty-seven \qquad
5. Continue the number pattern.

2. Continue the pattern.

182.186. \qquad 194
198. 202, 206
. Fill in the missing numbers and draw an arrow indicating the
 number 125 .

\diamond Multiplication Fact Practice \diamond

Lesson Proctice

If we round this number to the nearest million, we look at the digits in the millions place and the hundred thousands place.

$$
5,082,591
$$

The digit in the millions place rounds up to 6 because the digit in the hundred thousands place is 5 or greater. This would make the nearest million 6,000,000.
Original Number

5,782,591
Rounded to Nearest Million
6,000,000

cos

To round this number to the nearest million, we still look at the digits in the millions place and the hundred thousands place.

5, 282,591

The digit in the millions place rounds to 5 if the digit in the hundred thousands place is 4 or less. The digit in the hundred thousands place is 2 , so it rounds down. This means the nearest million is $5,000,000$.

Original Number
Rounded to Nearest Million
5,282,591
5,000,000

Round the distance from each planet to the sun to the nearest million. Underline the millions place, circle the hundred thousands place, and round. The first one has been done for you.

EARTH

$$
\text { 92. } 055,807 \text { miles }
$$

$93,000,000$ miles
COOL FACT: EARTH'S ROTATION IS GRADUALLY GETTING FASTER AFTER DECADES OF SLOWING.
JUPITER

$$
483,895,014 \text { miles }
$$

\qquad
COOL FACT: JUPITER IS THE FASTEST SPINNING PLANET IN OUR SOLAR SYSTEM.

SATURN
 886(351,249 miles
 - 886,000.000 miles

COOL FACT: SATURN ORaITS THE SUN ONCE EVERY 29.4 EARTH YEARS.
URANUS
$1,838.057,331$ miles $1.839,000.000$ miles COOL FACT: URANUS WAS THE FIRST PLANET DISCOVERED BY A TELESCOPE.
NE, TUNE $2,78 \mathbf{1}$ (74,218 miles $\quad 2,789,000.000$ miles
COOL FACT: THE AVERAGE TEMPERATURE ON NEPTUNE IS-392 ${ }^{\circ} \mathrm{F}$.

Review

I. Draw a pair of perpendicular line segments.

2. Draw a pair of horizontal parallel lines.

3. Which digit in $98,415,201,325$ is in the ten millions place? 1
4. Round each number below to the nearest ten, then the nearest hundred, and then the nearest thousand. The first one has been done for you.

	TENS	HUNDREDS	THOUSANDS
2.462	2.460	2,500	2,000
6,829	6,830	6,800	7.000
37,124	37,120	37,100	37,000
5,555	5,560	5,600	6,000

5. Complete the addition and subtraction problems.

359
+147
506
---:
161
---:
$\$ 835.44$
$\$ 81.39$
---:
$\$ 24.41$

6. Solve for the unknowns.

$$
\begin{array}{cccc}
Q+4=22 & C-14=9 & J+7=26 & P-5=16 \\
Q=22-4 & C=9+14 & J=26-7 & P=16+5 \\
Q=18 & C=23 & J=19 & P=\underline{21}
\end{array}
$$

7. Yuri Gagarin was the first human to journey into outer space. On April I2, 1961, he orbited the earth once before returning to Earth. That one orbit took 108 minutes. How long would it have taken him to orbit the earth 6 times? Write the multiplication problem you could use to find out.

1 orbit = 108 minutes 6 orbits = ? minutes
108×6
\checkmark Multiplication Fact Quiz ∇
Have your parent or teacher quiz you on the Set A multiplication facts below and circle any facts you missed. You will be doing targeted practice on these facts for the next few lessons.
\square

Lesson Practice

I. Name each type of angle.

\qquad
\qquad
\qquad
\qquad
2. What type of angle is formed by the missing slices of pizza?

\qquad

3. Below are the measurements for six different angles. Based on the
measurement, determine which type of angle is being formed and draw a line to it. Angle names can be used more than once.

Triangle Angles

Locate a triangle in the design. If the triangle has a right angle $\left(90^{\circ}\right)$, color it BLUE. If the triangle has an obtuse angle (between 90° and 180°), color it YELLOW. If the triangle has only acute angles (less than 90°), color it RED. Repeat for all the triangles.

Hint: An easy way to tell the type of angle is to use the corner of a piece of paper. If the corner fits into the angle perfectly, it's a right angle; if the angle is narrower than the corner, it's an acute angle; and if it's wider, it's an obtuse angle.

MATH 4

W

- Jenny Phillips

MATH 4
You will write many different fractions in this course. They include halves, thirds, fourths, fifths, sixths, eighths, tenths, and twelfths

2. Shade in parts of the shapes to match the fractions listed.

3. Fill in the blanks. Need help? Refer to the mini lesson if you get stuck.
The \qquad is the number of parts being referred to in a fraction and is the top number. The \qquad is the total number of equal parts that
make a \qquad
\qquad and is the bottom number.

Write a fraction that shows how many people in this family are roasting marshmallows. Then write a fraction that shows how many people are wearing red shirts.

6. Divide and shade the shapes to show the indicated fractions.

7. What fraction of the letters in the word MISSISSIPPI are the letter I?
8. What fraction of your family is younger than 14 ?

may vary

Read with your parent or teacher
You are now ready to take your first Multiplication Mastery Assessment. Have your parent or teacher quiz you on Multiplication Set A using the Multiplication Mastery Chart on page 395.

Parent/Teacher: Indicate which facts from Set A the student has mastered in the "Mastered" column on page 395. The student will continue to review and practice these facts throughout the course.
Read the clues below to determine the mystery number

- I am more than 2,000,000
- I am less than 2,500,000
- I have a 3 in the hundred thousands place.
- Rounded to the nearest hundred thousand, I'm 2,300,000
- I am not inside the hexagon.
Who am I? \qquad -

What is the name of the shape the mystery number is in?
\qquad

${ }^{48}$

\triangle Complete Mental Math Map Mysteries © There is no video for this lesson.
Number Search

Write each number using digits, and then circle it in the puzzle below. Don't forget the commas! Hint: Numbers are vertical and horizontal only.
a. thirty-six thousand, four hundred eighty-two
b. fifty-seven million, twenty-eight thousand, two hundred fifty-nine
c. two million, eight hundred nineteen thousand, six hundred seven
d. fifty-one thousand, four hundred twenty-six
e. thirty-two thousand, four hundred ninety-five
f. nine million, six hundred five thousand, one hundred fifty-three g. four million, two hundred forty-eight thousand, eight hundred thirteen $4.248,813$
h. forty-one million, four hundred fifty-eight thousand, two hundred fifty-eight 41,458,258

5	1	9	7	8	5	4	2
9	4	2	4	8	8	1	3
6	4	8	2	1	3	4	9
0	5	1	4	2	6	5	3
5	8	9	0	3	4	8	2
1	5	6	7	9	8	2	4
5	7	0	2	8	2	5	9
3	2	7	1	5	3	8	5

36.482
\qquad 57,028,259 2,819,607 32.495 9,605,153 .

MATH MYSTERIES

Planetary Puzzles
(Rounding and Place Value)

We used to consider our solar system to have nine planets until Pluto was downgraded to a dwarf planet by the International Astronomical Union in 2006. What is the distance in miles between Pluto and the sun? Complete the problems below to find out!

Round the following numbers to the nearest THOUSAND and write the rounded numbers on the lines provided.
6.421 6 0,0
22,314 2 2 , 으 으 ㅇ
1,845 2 0 으은
93,620 - $-4,0<0$

Round the following number to the nearest TEN THOUSAND and write the rounded number on the line provided.
Hint: Underline the ten thousands place and circle the thousands place.

Round the following numbers to the nearest HUNDRED and write the rounded numbers on the lines provided.

Write the numbers from the colored boxes in the corresponding boxes below to find out how many miles Pluto is from the sun.

Lesson Practice

I. Complete the following problems using the Number Line Hopping strategy. Visualize a number line in your head starting with the first number, and then hop down the tens and ones.

$$
58-27=31 \quad 92-61=31 \quad 65-18=47
$$

2. Complete the following problems using the Add to Both strategy. Add ones to the number being subtracted to get to the nearest ten, and then add the same amount to the other number. Then subtract.

$$
36-28=8 \quad 75-43=32 \quad 29-16=13
$$

3. Complete the following problems using the Subtracting Place Values strategy. Start with the larger number and subtract the tens first and then the ones of the smaller number.

$$
44-32=12 \quad 81-47=34 \quad 96-63=33
$$

4. Complete the following problems using the strategy that is easiest for you. You might use a different strategy for each problem or the same for both.

$$
48-26=22 \quad 63-19=44
$$

Which strategy or strategies did you use? Answers may vary. Example: Number Line Jumping, Give to Both, Tens and Ones

MATH 4

Review

I. Shade each circle to match the fraction listed.

2. What do you notice about each of the fractions you shaded above?

3. Which of the polygons below have right angles? \qquad
4. Which of the polygons below is an irregular polygon? \qquad

5. What is the name of the orange polygon? \qquad hexogon
6. What is the name of the blue polygon? \qquad
7. Which polygons have only obtuse angles? \qquad
8. Complete the problems.

$$
\begin{array}{rrrrrr}
8 & 9 & 3 & 6 & 3 & 4 \\
\times \frac{5}{40} & \times 4 \\
\hline 36 & \frac{\times 3}{9} & \frac{\times 6}{36} & \frac{\times 5}{15} & \times 9 \\
5 & 5 & 3 & 4 & 7 & 3
\end{array}
$$

$\begin{array}{r}627 \\ -578 \\ \hline 49\end{array}$
$\begin{array}{r}224 \\ -\quad 57 \\ \hline 167\end{array}$
$\begin{array}{r}450 \\ +172 \\ \hline 622\end{array}$

$$
\begin{array}{r}
394 \\
+437 \\
\hline 831
\end{array}
$$

$$
567
$$

$\begin{array}{r}-\quad 57 \\ \hline 167\end{array}$

$$
\begin{array}{r}
+172 \\
\hline 622
\end{array}
$$

$\begin{array}{r}567 \\ -\quad 93 \\ \hline 474\end{array}$

Practice Set B for 10 minutes or more by doing Musical Multiplication or flashcards. Then complete the problems in this section.

$$
\begin{array}{rrrrrr}
4 & 7 & 8 & 4 & 7 & 9 \\
\times 5 \\
\hline 20 & \times 3 \\
\hline 21 & \times 7 \\
\hline 56 & \times 4 \\
\hline 16 & \times 4 \\
\times 3 & \times 5 \\
\hline
\end{array}
$$

Math 4 Answer Key

(9) MATH 4

Math 4 Answer Key

MATH 4
I. At 8:38 AM you started your math
homework, and you finished at IO:45 AM.
How long did it take you?

Time	Interval
$8: 38 \mathrm{AM}$	
$9: 38 \mathrm{AM}$	1 hour
$10: 38 \mathrm{AM}$	1 hour
$10: 45 \mathrm{AM}$	7 minutes
2 hours 7 minutes	

2. Once you finished your math homework, you started reading a book for history. You read until I2:05 PM. How long did you read?

Review

3. Use mental math strategies to find the answers.
$46-22=24$
$84-57=27$
4. Divide and shade each shape to match the fraction listed.

5. Draw a line of symmetry through each polygon. Which polygons have more than one line of symmetry?

$$
\begin{aligned}
& \checkmark \text { Multiplication Fact Practice } \diamond \\
& \text { Practice Set B for } 10 \text { minutes }
\end{aligned}
$$

- MATH 4

Review

I. Complete the addition problems, and then round the answers to the nearest hundred million.

$$
\begin{array}{r}
578,327,650 \\
+\quad 31,594,641 \\
\hline 609,922,291
\end{array} \quad \begin{array}{r}
3,274,851,049 \\
+\quad 194,354,227 \\
\hline 60,469,205,276 \\
\hline
\end{array}
$$

2. The farmers market opens at 8:15 AM. At II:42 AM Martha sells the last carton of Daisy's milk. How long did it take her to sell all the milk?

Time	Interval
8:15 AM	
9:15 AM	1 hour
10:15 AM	1 hour
11:15 AM	1 hour
$11: 42 \mathrm{AM}$	27 minutes

3 hours 27 minutes
3. Each morning Martha helps her dad and mom milk the cows. They start at 5:45 AM and finish at 7:28 AM. How long does it take to milk the cows?

1 hour 43 minutes
4. Use mental math strategies to find the answers.

$$
46+22=68 \quad 85-36=4
$$

5. Draw and shade a shape to match each fraction listed.

6. Circle the letters that have parallel line segments.

$$
\begin{aligned}
& \text { ABCDQ日GQUKLD } \\
& \text { OOPQRSIUVOXYO }
\end{aligned}
$$

7. Underline the letters above that have perpendicular line segments.

$$
\begin{aligned}
& \checkmark \text { Multiplication Fact Practice } \diamond \\
& \text { Practice Set B for } 10 \text { minutes. Then complete the problems. } \\
& \begin{array}{rrrrrrr}
9 & 4 & 9 & 4 & 9 & 7 & 8 \\
\times 4 & \times 4 \\
\hline 36 & \frac{\times 5}{16} & \frac{\times 5}{20} & \frac{\times 3}{27} & \frac{\times 3}{21} & \times 7 & \frac{7}{56} \\
7 & 8 & 6 & 6 & 3 & 8 & 5 \\
\times 4 & \frac{\times 5}{40} & \frac{\times 6}{36} & \frac{\times 4}{24} & \frac{\times 4}{12} & \frac{\times 0}{0} & \frac{\times 4}{20} \\
\hline 5 & 3 & 4 & 4 & 7 & 3 & 5 \\
\frac{\times 9}{45} & \frac{\times 7}{21} & \frac{\times 9}{36} & \frac{\times 7}{28} & \frac{\times 8}{56} & \frac{\times 9}{27} & \frac{\times 8}{40}
\end{array}
\end{aligned}
$$

Number lines can be used to show fractions and mixed numbers. The number line below is divided into 5 equal parts between 0 and 1 , so each section represents $\frac{1}{5}$. To plot a fraction, we count the number of tick marks between two whole numbers. The fraction $\frac{4}{5}$ is shown on the number line below.

To plot a mixed number, we first count forward to the whole in the mixed number. Then we count the tick marks that represent the fraction. The mixed number $2 \frac{5}{6}$ looks like this.

When we name a point marked on a number line, we count the number of wholes before the point. When naming the fractional part, we count the number of tick marks between the whole numbers. If there are 4 equal parts, each tick mark represents $\frac{1}{4}$. The point on the number line below is the mixed number $1 \frac{1}{4}$.

Lesson Practice

I. Write the mixed number for each picture.

2. Draw a picture for each mixed number. Use crayons or colored pencils if desired.

3. Label each tick mark on the number line with the missing fractions and mixed numbers.

MATH 4
4. Identify the fraction and mixed numbers shown on the number

$$
A=\frac{2}{6} \quad B=1 \frac{5}{6} \quad C=2 \frac{2}{6}
$$

5. Plot and label the following fraction and mixed numbers on the

$A=\frac{4}{5}$
$B=1 \frac{2}{5}$
I. Complete the subtraction problems by regrouping.

$$
\begin{array}{r}
500,000 \\
-\quad 487,306 \\
\hline 12.694
\end{array} \begin{array}{r}
9,000,000 \\
\hline 6.816,342 \\
\hline 6.183 .658
\end{array}
$$

Review
3. Write the names of the irregular polygons below.

\qquad

Pentagon

Quadrilateral

4. Continue the pattern. Hint: Pay attention to the difference between each number!

$$
1,2,4,7,11, \frac{16}{-22}, 29, \frac{37}{29}, \frac{46}{56}
$$

\diamond Multiplication Fact Practice $\diamond \quad$ Practice Set B for 10 minutes.

4	9	5	3	4	8	3	8	4
$\times 7$								
28	$\frac{\times 3}{27}$	$\frac{\times 8}{40}$	$\frac{\times 9}{27}$	$\frac{\times 9}{36}$	$\frac{\times 10}{80}$	$\frac{\times 7}{21}$	$\frac{\times 5}{40}$	$\frac{\times 4}{16}$
8	9	7	7	5	6	4	9	5
$\times 7$	$\frac{\times 5}{45}$	$\frac{\times 3}{21}$	$\frac{\times 8}{56}$	$\frac{\times 9}{45}$	$\frac{\times 4}{24}$	$\frac{\times 5}{20}$	$\frac{\times 4}{36}$	$\frac{\times 4}{20}$
56								

MATH 4θ

Let's order these three numbers from greatest to least. All three numbers have equal digits in the hundred millions, ten millions, and millions places When we look at the hundred thousands place, the third number has a greater digit than the other two numbers, so it is the largest number and we label it as number 1 . We continue comparing the other two numbers. The first number has a greater digit in the thousands place, so it is the next largest and we label it as number 2. The remaining number is the least and is labeled number 3 . We can then write them in order.

479,187,360
479,185,367
479,287,360

Numbers	Ordered from Greatest to Least		
$479,187,360 \longrightarrow 2$			
$479,185,367 \longrightarrow 3$	$479,287,360$	$479,187,360$	$479,185,367$
$479,287,360 \longrightarrow 1$			

Lesson Practice

I. Circle the place value that determines which number is greater. The first one is done for you.

$374,081,983$ < 374,801,992	56,497.024	> 56,496,024
Millions Hundred Thousands Ten Millions	hous	ens Millions
278,037,917 < 278,037,927	4,814,067	> 4.714.067
Ten Thousands Hundred Millions	Ones Millions	Hundred Thousands
$571,684,129>571,684,128$	98,247,364	< 99,247,364
Hundred Millions Thousands	Hund	housands Ten Millions

2. Compare the two numbers and fill in the <, >, or = symbol.

3. Order the chart from least to greatest.

POPULAR TOURIST DESTINATIONS	NUMBER OF VISITORS
Palace of Versailles (France)	$5,978,579$
Toj Mahal (India)	$6,937,841$
Great Barrier Reef (Australia)	$5,978,049$
Grand Canyon (USA)	$6,734,247$
Eiffel Tower (France)	$6,934,571$
Cologne Cathedral (Germany)	$6,734,847$

POPULAR TOURIST DESTINATIONS	NUMBER OF VISITORS
Great Barrier Reef (Australia)	$5,978,049$
Palace of Versailles (France)	$5,978,579$
Grand Canyon (USA)	$6,734,247$
Cologne Cathedral (Germany)	$6,734,847$
Eiffel Tower (France)	$6,934,571$
Taj Mahal (India)	$6,937,841$

Review

I. Identify the fraction and mixed numbers shown on the number line.

$$
M=\frac{4}{5} \quad P=1 \frac{2}{5} \quad S=2 \frac{1}{5}
$$

2. Draw a line from the picture to its mixed number.

3. Complete the problems, and then round the answers to the nearest ten million.

$$
\begin{array}{r}
600,000,000 \\
-\quad 78,346,917 \\
\hline 521,653,083
\end{array}+\quad 169,371,02591,204 ~ 子 \begin{array}{r}
744,062,229
\end{array}
$$

$520,000,000$
$740,000,000$
4. Continue the number pattern.

\diamond Multiplication Fact Practice \diamond
Practice Set B for 10 minutes. Then complete the problems.

$$
\begin{array}{rrrrrrr}
5 & 4 & 5 & 4 & 3 & 3 & 4 \\
\times 9 & \times 4 & \times 4 & \times 9 & \times 7 & \times 9 & \times 7 \\
\hline 45 & \frac{\times 7}{16} & \frac{7}{21} & \frac{5}{27} & \frac{4}{28} \\
7 & 5 & 3 & 5 & 9 & 8 \\
\frac{\times 8}{56} & \frac{\times 8}{40} & \frac{\times 5}{15} & \frac{\times 5}{25} & \frac{\times 8}{32} & \frac{\times 5}{45} & \times 7 \\
4 & 9 & 8 & 7 & 9 & 7 & 8 \\
\frac{95}{20} & \frac{\times 4}{36} & \frac{\times 5}{40} & \frac{\times 3}{21} & \frac{\times 3}{27} & \frac{\times 4}{28} & \frac{\times 2}{16}
\end{array}
$$

If we measure this pencil to the nearest inch, we look at the end of the pencil and determine which whole-inch tick mark is closest. The pencil is between 7 and 8 inches. It is closer to 7 inches because the end of the pencil is between 7 inches and $7 \frac{1}{2}$ inches.

If we measure this pencil to the nearest half inch, we look at the end of the pencil and determine which half-inch tick mark is closest. This pencil is closer to the $7 \frac{1}{2}$ inch mark because it is past the halfway point between 7 inches and $7 \frac{1}{2}$ inches.

If we measure this pencil to the nearest quarter inch, we look at the end of the pencil and determine which quarterinch tick mark is closest. This pencil is closest to $7 \frac{1}{4}$ inches.

Lesson Practice

1. On the ruler below, trace the inch lines in blue, the half-inch lines in red, and the quarter-inch lines in green.

2. Using the ruler above, measure the length of the crayon to the following units:
Nearest inch 4 inches \quad Nearest half inch $4 \frac{1}{2}$ in
3. Find an object in your house that measures between 5 and 9 inches. Show your parent or teacher and write the name of the object and its measurement.

MATH $4 \otimes$
6. Label the inch scale below with the missing half-inch and quarter-

inch measurements.
7. Measure each line segment from the pentagon to the other shapes to
the nearest quarter inch. Write the measurement on each line. Which the nearest quarter inch. Write the measurement on each line. Which shape is farthest away? hexagon shape is farthest away? hexagon

4. A line segment is named by its two endpoints.

5. Using a 12 -inch ruler, measure the following line segments on the line below to the nearest quarter inch.
 $\overline{\mathrm{AE}} \quad 3 \frac{1}{2}$ in point A and measure the distance between

Today, you will try an interesting activity to estimate your height in inches. First, you will need to carefully trace your hand on the next page.
Use your ruler to measure your hand from the very bottom of your hand to the top of your middle finger, to the nearest inch.

To find out your approximate height, multiply the length of your hand by 10 . Answers will vary.

Hand = \qquad inches $\times 10=$

Since we are rounding to the nearest inch, your height will be an estimate and not an exact measurement. Do you want to get an even closer estimate to your actual height? Try measuring your hand to the nearest half inch or quarter inch and multiplying it by 10 . Use a calculator if you need help.

(V) Multiplication Fact Quiz $\sqrt{\text { Have your parent or teacher quiz you on the Set B multiplication facts below and circle any }}$

(1) MATH 4

1. About how many fish did you
catch if you caught both the
mackerel and the salmon? Round
to the nearest hundred thousand
and estimate.
2. About how many more sturgeon
than herring did you catch? Round
to the nearest ten thousand and
estimate.
3se the chart to calculate your catch.
3. About how many fish did you
catch if you caught both the
sturgeon and the herring? Round
to the nearest hundred thousand
and estimate.
4 About how many more salmon
than flounder did you catch?
Round to the nearest ten thousand
and estimate.

MATH 4

Review

I. On the ruler above, draw a dot to indicate each measurement below.
A) $2 \frac{1}{2}$ in
B) $4 \frac{3}{4}$ in
C) $\frac{1}{4}$ in
D) 10 in
2. Using the ruler above, measure the length of the pencil to the following:

Nearest inch 8 in Nearest quarter inch $\underline{8 \frac{1}{4} \text { in }}$
\qquad in
3. Compare the numbers and fill in the $<$, >, or $=$ symbol.
$4,374,651>4,372,048$
$7,852,349>7,852,249$
6. The fishing boat leaves the harbor at 4:37 AM. The boat returns to the harbor at $10: 12 \mathrm{AM}$ with a full load of fish. How long did it take the boat to complete its trip? Use the box on the right.
7. Complete.

400,000,000
$\begin{array}{r}-\quad 227,316,643 \\ \hline 172,683,357\end{array}$

Time	Interval
4:37 AM	
$9: 37$ AM	5 hours
10:00 AM	23 minutes
10:12 AM	12 minutes
5 hours 35 minutes	

4. Put these numbers in order from greatest to least.

979,168	$1,274,058$
$1,274,058$	$1,274,054$
974,387	984,387
$1,274,054$	979,168
984,387	974,387

5. Identify the fraction and mixed numbers shown on the number line.

Targeted Multiplication Fact Practice

Practice any problems you missed in your Set B quiz in Lesson 23. Then complete the problems.

$$
\begin{array}{rrrrrrrrr}
5 & 4 & 9 & 8 & 4 & 9 & 7 & 8 & 9 \\
\times 8 \\
\hline 40 & \frac{\times 4}{16} & \frac{\times 5}{45} & \frac{\times 5}{40} & \frac{\times 5}{20} & \frac{\times 4}{36} & \frac{\times 3}{21} & \frac{\times 7}{56} & \frac{\times 3}{27} \\
5 & 7 & 5 & 5 & 3 & 4 & 4 & 3 & 7 \\
\times 1 \\
\hline 5 & \frac{\times 4}{28} & \frac{\times 4}{20} & \frac{\times 9}{45} & \frac{\times 7}{21} & \frac{\times 9}{36} & \frac{\times 7}{28} & \frac{\times 9}{27} & \frac{\times 8}{56}
\end{array}
$$

(1)
 travelinc Through ITIME

 listed on this map to answer the questions in the practice section.
(t) MATH 4

Math 4 Answer Key

MATH 4
I. Oliver and his family are
visiting a local fruit farm to
pick their own strawberries.
They started picking berries at
2:37 PM. It took them 3 hours
and 23 minutes to fill up their
baskets. What time did they
finish picking strawberries? 2:37 PM PM Interval
2. Round the numbers to the nearest million and estimate the answer. Then complete the problem to see how close your estimate is.

$$
\begin{array}{r}
6,349,123 \\
-\quad 3,603,876 \\
\hline 2,745,247
\end{array} \quad \begin{array}{r}
6,000,000 \\
-4,000,000 \\
2,000,000
\end{array}
$$

Review

4. Measure the carrot to the nearest half inch. 4 inches

5. Compare the numbers and fill in the $<$, >, or $=$ symbol.
$2,349,105>2,341,048 \quad 13,452,349<13,452,357$
6. Label these mixed numbers on the number line.

7. Bryan completed the addition problem below. Round the numbers to the nearest hundred thousand and estimate the answer. Based on your estimated answer, is Bryan's answer likely right or wrong?

$2,631,049$	$2,600,000$ $+1,300,000$ $+1,282,437$ $4,913,486$$\quad$ Likely wrong

ce any problems you missed in your Set B quiz in Lesson 23. Then ete the problems.								
5	4	9	8	4	9	7	8	9
		+ 5		+ 5	+ 4		$\begin{array}{r}\text { + } \\ \times \\ \hline\end{array}$	+ 3
40	16	45	40	20	36	21	56	27
6	7	5	5	3	4	4	3	7
	$\begin{array}{r}7 \\ \times \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times 4 \\ \hline\end{array}$	9	\times	+ 9	+7	+ 9	+ 8
36	28	20	45	21	36	28	27	56

The next day you traveled 53 miles, stopped for ice cream, and then traveled
Day 2 38 more miles to ride a roller coaster. Later, you traveled 126 miles and crossed a stone bridge and then drove another 219 miles to see a red rock canyon. How far did
 you travel on the second day of your trip? 436 miles

Day 3
On Day 3 you took the scenic route through the canyon for 291 miles. Then
On Day 4 you drove 86 miles to have
45 miles to a hotel with a swimming poor
breakfast in a park before driving
Day 4
breakfast in a park before drivin
176 miles to the museum 176 miles to the museum. That

- Jenny Phillips

国

MATH 4

Complete the problems below to find the answer to the riddle.
3. Fill in the numerator for each fraction to make it equal to $\frac{1}{2}$.

$\frac{4}{8}$	$\frac{2}{4}$	$\frac{3}{6}$	$\frac{5}{10}$	$\frac{1}{2}$	$\frac{6}{12}$	$\frac{9}{18}$
M	L	E	G	I	U	D

4. Fill in the denominator for each fraction to make it equal to $\frac{1}{2}$.

$\frac{16}{32}$	$\frac{7}{14}$	$\frac{12}{24}$	$\frac{8}{16}$	$\frac{11}{22}$	$\frac{10}{20}$	$\frac{15}{30}$
F	O	Y	T	B	N	A

5. Fill in the numerator for each fraction to make it equal to 1 .

$\frac{8}{8}$	$\frac{13}{13}$	$\frac{6}{6}$	$\frac{10}{10}$	$\frac{2}{2}$	$\frac{12}{12}$	$\frac{17}{17}$
R	C	H	P	S	V	J

Why was the math book sad?

6. Shade half of each shape, and then write the fraction that the shaded part represents next to each shape. shaded portions may vary

7. Write the number form of the fractions listed below.

Read with your parent or teacher

It's time to take your next Multiplication Mastery Assessment. Have your parent or teacher quiz you on Multiplication Set B using the Multiplication Mastery Chart on page 395.

Parent/Teacher: Indicate which facts from Set B the student has mastered in the "Mastered" column on page 395. The student will continue to review and practice these facts throughout the course.

1. Label the inch scale below with the missing half-inch and quarter-inch measurements.

2. Measure this line segment to the nearest quarter inch.

3. How long is the lollipop?

I Additional Proctice

1. Draw a line segment that is $2 \frac{3}{4}$ inches long.
2. Measure the following line segment to the nearest inch.

3. Find an object in your house that measures between 3 inches and 4 inches. Show it to your parent or teacher

ADDITION. SUBTRACTION G WRITING NUMBERS (LESSONS 19 \& 20)

1. Complete each problem.

2. Write the following numbers using digits.

Twenty-four million, six hundred seventy-two thousand, nine hundred thirty-one 24.672 .931

Seven billion, three hundred nineteen million, nine hundred forty-six thousand, two hundred four \qquad
3. Write the following number using words.

357,618,452
three hundred fifty-seven million, six hundred eighteen thousand, four hundred fifty-two

1. How many cacao beans are there? Write the number in word form. thirty-five million, four hundred seventy-six thousand,

2. How many more bottles of milk are there than rubber ducks?

ม

MATH 4

Label each clock with the type of angle formed by its hands.

1. At $7: 24 \mathrm{AM}$ you started your math lesson. At 8:48 AM you finished the last problem. How long did the lesson take you to complete?

11:19 AM
2. Next, you started working on your science project. You started at 9:12 AM, and it took 2 hours and 7 minutes to complete. What time did you finish your science project?
3. Mary and her family are driving from Kansas to Colorado. They leave at 7:35 AM and arrive at II:23 AM. How long did the drive take?

4. Takeshi ran in a race for a local charity. It took him 2 hours and 27 minutes to complete the race, and he finished at $4: 38 \mathrm{PM}$. What time did the race start?

\geq Additional Practice

Fill in the missing start and end times for each flight. Show your work on a separate piece of paper.

Destination	Start Time	Flight Duration	End Time
Hamburg, Germany	$8: 31$ AM	3 hours 13 minutes	$11: 44 \mathrm{AM}$
Vancouver, Canada	$2: 36 \mathrm{PM}$	7 hours 39 minutes	$10: 15 \mathrm{PM}$
Nairobi, Kenya	$1: 50 \mathrm{PM}$	2 hours 52 minutes	$4: 42 \mathrm{PM}$
Nong Kai, Thailand	$1: 47 \mathrm{AM}$	8 hours 24 minutes	$10: 11 \mathrm{AM}$
Buenos Aires, Argentina	$5: 57 \mathrm{PM}$	2 hours 42 minutes	$8: 39 \mathrm{PM}$

MATH 4

	Ten Thusands	Millions	Ien Mill
51,487,354	51,490,000	51,000,000	50,000,00
88,274.650	88,270,000	88,000,000	,00
37,623.013	37,620,000	38,000,000	40,000,000
378.634	$\underline{15.380,000}$	15,000.0	

2. Match each number with its value rounded to the nearest million.

3. Circle the digit in the thousands place. Put a box around the digit in the ten millions place. Underline the digit in the hundred thousands place. Round the number to the hundred millions place.

$300,000,000$

2．Answer the questions by writing the names of the polygons shown above．

Which polygon has right angles？ \qquad

Which polygon has only acute angles？ \qquad

Which polygon has four sets of parallel lines？ \qquad octagon

Which polygons are left？pentagon and hexagon

\therefore Additional Practice

1．Draw a line from each polygon to its name．

2．Use the clues to identify the mystery letter．
AM（F）上 6 ＊正时壮正 I have no oblique line segments． I have only straight line segments． I have a set of parallel line segments．
I have a set of perpendicular line segments．
I have two horizontal line segments and one vertical line segment． Which letter am I？
－Jenny Phillips

风

MATH 4

COMPARE．ORDER \＆ESTIMATE

 NUMBERS（LESSONS 22 G 24）1．Grace completed the problem below．Round both numbers to the nearest ten thousand and estimate the answer．Based on your estimation，is Grace＇s answer likely right or wrong？

$$
913413
$$

$$
\begin{array}{r}
8,85,849 \\
-344,917 \\
\hline 690,432
\end{array} \quad \begin{array}{r}
840,000 \\
-340,000 \\
500,000
\end{array} \quad \text { likely wrong }
$$

2．Order the numbers below from greatest（on top）to least．

$347,287,104$	$347,841,358$
$347,841,358$	$347,764,020$
$347,231,985$	$347,287,104$
$347,764,020$	$347,234,765$
$347,234,765$	$347,231,985$

Addition al Practice

1．Compare the two numbers and fill in the $<,>$ ，or $=$ symbol．

$39,715,624<39,717,842$	$2,629.374<2,629.719$
$84,617.619>84,617,270$	$492.726,311<492,746,997$
$2,674,824>677.917$	$3.374 .035<21,379.674$

2．Round to the nearest hundred thousand and estimate the sum．
2，631，049
$\begin{array}{r}+1,282,437 \\ \hline\end{array}$
2，600．000
$\begin{array}{r}+1,300,000 \\ \hline 3,900,000\end{array}$

FRACTIONS \＆MIXED NUMBERS（LEsSoNs 15 \＆21）

1．Plot and label the following mixed numbers and fraction on the number line．

$$
A=2 \frac{3}{6} \quad B=1 \frac{5}{6} \quad C=\frac{1}{6}
$$

2．Divide and shade each shape to match the fraction listed．

3．Draw a picture to represent the mixed number $4 \frac{4}{6}$ ．

1．Write the location of each point shown on the number line．

2．Draw a picture to represent the mixed number $2 \frac{1}{4}$ ．

Practice			
Practice Set C for 10 minutes, and then complete the problems in this section.			
8	7	3	8
$\frac{\times 6}{48}$	$\begin{array}{r} \times 9 \\ \times 63 \end{array}$	$\frac{\times 6}{18}$	$\begin{array}{r} \times 3 \\ 24 \end{array}$
5	8	6	5
$\frac{\times 6}{30}$	$\frac{\times 9}{72}$	+ 9	$\begin{array}{r} \times 7 \\ 35 \end{array}$
1	7	10	8
+6	\times	$\begin{array}{r} \times \quad 6 \\ \hline 60 \end{array}$	+ 2
5	8	7	8
+ 3	+ 8	$\times 3$	$\times 7$
15	64	21	56
2	7	6	7
$\frac{\times 11}{22}$	$\frac{\times 6}{42}$	+ 7	$\frac{\times 7}{49}$
3	6	9	6
+ 8	+ 3	$\times 7$	+ 8
24	18	63	48
7	9	6	9
+ 5		+ 5	$\times 8$
35	54	30	72

I. Draw and shade four shapes that represent fractions equivalent to

Answers will vary.
2. Draw a line segment that is three inches long.

3. Divide the line segment you drew into three equal sections. How long is each section?

1 inch
4. Complete each multiplication problem.

$$
\begin{array}{r}
524 \\
382 \\
\times \quad 227 \\
\times \quad 2 \\
\hline 1,048
\end{array} \begin{array}{r}
142 \\
\times \quad 4 \\
\hline 1,528
\end{array} \begin{array}{r}
276 \\
\times \quad 3 \\
\hline 681
\end{array} \begin{array}{r}
330 \\
\hline 852 \\
\hline 1,380
\end{array} \begin{array}{r}
175 \\
\hline 990
\end{array} \frac{231}{1,225} \begin{array}{r}
9 \\
\hline 924
\end{array}
$$

5. Solve the logic puzzles below.

m
Math 4 Answer Key

When multiplying a number by 10,000 , it becomes 10,000 times larger! For example, $2 \times \$ 10,000$ is the same as 2 groups of $\$ 10,000$.
$\$ 10,000+\$ 10,000=\$ 20,000$

Ten Thousands	Thousands	Hundreds	Tens	Ones
				2
2	0,	0	0	0

The same mental math strategy can be applied to all of these problems.

$2 \times 10,000=?$	$12 \times 100=?$	$47 \times 1,000=?$	$80 \times 10,000=?$
2×1	$=2$	$12 \times 1=12$	$47 \times 1=47$
$2 \times 10,000=20,000$	$12 \times 100=1,200$	$47 \times 1,000=47,000$	80×1

Lesson Practice

- MATH 4

\diamond Multiplication Fact Practice \diamond

2. Gail is taking a bus tour of Glacier National Park. The tour leaves at 7:55 AM and returns at II: 13 AM. How long is the tour?

3. Circle the fractions that are equivalent to $\frac{1}{2}$

$$
\frac{5}{8}\left(\frac{3}{6}\left(\frac{12}{24}\right) \frac{2}{5}\left(\frac{8}{16}\right) \frac{1}{3} \frac{7}{10}\left(\frac{4}{8}\right)\left(\frac{6}{12}\right)\right.
$$

4. Connie is making chicken noodle soup. She needs to add 2 gallons of chicken broth to the pot. How many cups of broth will she need to add to the pot to equal 2 gallons?

32 cups

5. Ricky needs to bring 8 quarts of orange juice to the fundraiser. He has 28 cups right now. How many more cups of orange juice does he need?
6. 16 pints $=$ \qquad quarts

Lesson Practice

I. Would you use liters (L) or milliliters (mL) to measure the volume of each item below? Write L or $m L$ on the line.
3. Convert from milliliters to liters.

2. Convert from liters to milliliters.

4. Circle the greatest volume in each box.

MATH 4 @

4. With permission from your parent or teacher, you will do some real-life measuring. You need a one-cup measuring cup and a large bowl or pitcher.

- One at a time, carefully measure 2 cups of water into your bowl. How many pints are in your bowl? 1
- Now add 2 more cups of water for a total of 4 cups. How many pints are in your bowl now? 2 What other unit equals 4 cups? quart
- Add 4 more cups of water for a total of 8 cups. How many pints do you have? 4 How many quarts? 2 How many more cups do you need to add to reach I gallon? 8 Go ahead and add those now.

\diamond Multiplication Fact \diamond Practice			
Practice Set C for 10 minutes, and then complete the problems in this section.			
3	6	4	6
+88	+ 3	$\times 1$ $\times 4$	+ 8
5	8	6	5
$\times 6$	$\times 9$		$\times 7$
30	72	54	35
1	7	10	8
+6	+0	+ 6	+ 2
6	3	9	4
$\begin{array}{r} \\ \times 4 \\ \hline 24\end{array}$	$\times 3$ $\times 9$	+ 5	+ 4 16
11	7	6	7
$\begin{array}{r}11 \\ \times \quad 7 \\ \hline 77\end{array}$	+ 6	+ 7	+ 7
8	7	3	8
+ 6	$\begin{array}{r}\text { + } 9 \\ \hline 63\end{array}$	+ 6	$\begin{array}{r}\text { + } 3 \\ \hline 24\end{array}$
7	9	6	9
+ 5	+ 6	+ 5	$\begin{array}{r} \times 8 \\ \hline 72 \end{array}$

T- MATH 4

\boxtimes Multiplication Fact Quiz \boxtimes
Have your parent or teacher quiz you on the Set C multiplication facts below and circle any facts you missed. You will be doing targeted practice on these facts for the next few lessons.

I. Complete each conversion.
$7 \mathrm{~L}=7,000 \mathrm{~mL}$
$8 \mathrm{q}^{+}=\frac{2}{} \mathrm{gal}$
$10 \mathrm{c}=\frac{5}{\mathrm{p}}$
$9.000 \mathrm{~mL}=9 \mathrm{~L}$
3 gal $=24 \mathrm{pt}$

$15 \mathrm{~L}=15,000 \mathrm{~mL}$

Review

2. For each row, circle all shapes that are congruent (same shape and size) to the first shape and put a box around all shapes that are similar (same shape) but not congruent.

Targeted Multiplication (f) Practice any problems you missed in your Set C quiz in Fact Practice Lesson 34. Then complete the problems in this section

9	9	8	7	7	7	9	9	6	6	5	8
$\begin{array}{r} \times 8 \\ \hline 72 \end{array}$	+6	$\begin{array}{r}8 \\ \times 3 \\ \hline 24\end{array}$	$\times 9$ $\times 63$	$\times 7$ $\times 49$	$\begin{array}{r}\times 6 \\ \hline 42\end{array}$	$\begin{array}{r} \\ \times 4 \\ \hline 36\end{array}$	+ 3	+ 8	+ 3	+ 7	$\begin{array}{r}\text { + } 9 \\ \hline 72\end{array}$
6	7	3	8	6	9	6	8	10	3	6	5
$\begin{array}{r} \times 5 \\ \hline 30 \end{array}$	$\begin{array}{r} \times 5 \\ \hline 35 \end{array}$	$\begin{array}{r} \times 6 \\ \hline 18 \end{array}$	$\begin{array}{r} \times 6 \\ \hline 48 \end{array}$	$\begin{array}{r} \times 7 \\ \hline 42 \end{array}$	$\begin{array}{r} \times 7 \\ \hline 63 \end{array}$	$\frac{\times 6}{36}$	$\begin{array}{r} 4 \\ \hline 32 \end{array}$	$\begin{array}{r} \times \quad 6 \\ \hline 60 \end{array}$	$\begin{array}{r} \times 8 \\ \hline 24 \end{array}$	+ 9	+ 6

Another way to find the area of a shape is to use a formula. The following is the formula for finding the area of a square or rectangle.

\uparrow Area $=$ Length \times Width \uparrow

To find the area for the shape below, you multiply the length of 5 units by the width of 4 units, which is 20 square units. You can use this formula to find the area of a square or rectangle instead of counting square units within the shape.

$\underset{\text { Length }}{5 \text { units }} \times \underset{\text { Width }}{4}$ units $=\underset{\text { Area }}{20}$ squnits

$4 \underset{\text { Length }}{\text { units }} \times 2 \underset{\text { Width }}{\text { units }}=\underset{\text { Areo }}{8}$ squnits

Lesson Practice

I. How do you find the perimeter of an object?
add the length of all sides together
2. What is the formula for finding the area of a rectangle or square?

$$
\text { Area }=\text { Length } \times \text { Width }
$$

3. Read each description and decide whether you would need to find the area or the perimeter for each situation. Circle the correct answer.
a) I need to glue a ribbon around the edge of the table.

PERIMETER or AREA
b) I want to plant grass in my entire backyard.
PERIMETER Or AREA
c) I need to buy enough wood shavings to cover the floor of my hamster cage. PERIMETER or AREA
d) I need to cover the top of the table with a tablecloth.
PERIMETER or AREA
e) I want to plant flowers around the edge of my backyard.
\qquad
f) I am building a new cage for my hamster, and I need to buy enough wood for the walls of the cage. PERIMETER or AREA
4. What are the perimeter and area of this shape?

PERIMETER: 26 units
AREA: 36 sq units

Lesson Proctice

1. Perfect squares make a pattern on a multiplication chart Color in each perfect square from I^{2} to IZ^{2}. The numbers $4^{2}(4 \times 4)$ and $9^{2}(9 \times 9)$ have been done for you.

1									2	3	4	5

2. Convert each problem from factored form to exponent form The first one is given as an example.
3. Fill in the missing information. The first row has been done for you.

Exponent Form	Foctored Form	Answer
1^{2}	1×1	1
2^{2}	2×2	4
3^{2}	3×3	9
4^{2}	4×4	16
5^{2}	5×5	25
6^{2}	6×6	36
7^{2}	7×7	49
8^{2}	8×8	64
9^{2}	9×9	81
10^{2}	10×10	100
11^{2}	11×11	121
12^{2}	12×12	144

$5 \times 5 \times 5 \times 5$ \square $1 \times 1 \times 1 \times 1 \times 1 \times 1$ \square
\square $3 \times 3 \times 3$ \square
$12 \times 12 \times 12 \quad 12^{3}$
\square 7×7
$6 \times 6 \times 6 \times 6 \times 6$ \square
$5 \times 5 \times 5 \times 5 \times 5 \times 5$

MATH 4
 (MATH) MYSTERIES Sudoku

Complete each problem.
Review

In a sudoku puzzle, you fill in the missing numbers until you have the numbers $1-9$ in each block. Each number can only appear once in a row, column, or block. TIP: If a box has more than one possible option, skip it and come back to it after filling in more boxes.

4	3	9	2	6	8	7	1	5
6	7	8	4	5		2	3	9
1	5	2	9	3	7	8	4	6
7	9	4	3	1	2	6	5	8
8	1	5	6	4	9	3	7	2
3	2	6	8	7	5		9	4
5	8	3	7	9	6	4	2	1
2	4	1	5	8	3	9	6	7
9	6	7		2	4	5	8	3

w

Math 4 Answer Key

We can use pictures to compare a fraction to one-half.

In this picture we can clearly see that four-sixths is greater than one-half.
We can compare fractions to one-half without pictures as well. To determine if a fraction is greater than or less than one-half, we find half of the denominator and then see how the numerator compares to this number.

If the numerator is greater than half of the denominator, the fraction is greater than one-half.

If the numerator is less than half of the denominator, the fraction is less than one-half.

$$
\frac{3}{4}>\frac{1}{2}
$$

Half of the denominator is 2 . The numerator 3 is greater than 2 . So three-fourths is greater than one-half.
Half of the denominator is 5. The
numerator 3 is less than 5. So three-tenths
is less than one-half.

Lesson Practice

Fill in the missing information for each problem. Then fill in the boxes to show the associative property.

Targeted Multiplication Fact Practice of Practice any problems you missed in your Set C quiz in Lesson 34. Then complete the problems in this section to review Sets A, B, and C facts. Review Sets A, B, and C

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrrrrrr}
6 & 5 & 8 & 6 & 5 & 3 & 9 & 6 & 6 & 6 & 8 & 7 & 7 & 8 & 7 & 7 & 9 \\
\times 4 & \frac{\times 6}{30} & \frac{\times 9}{72} & \frac{\times 9}{54} & \frac{\times 7}{35} & \frac{\times 8}{24} & \frac{\times 7}{63} & \frac{\times 3}{18} & \frac{\times 8}{48} & \frac{\times 7}{42} & \frac{\times 6}{48} & \frac{\times 6}{42} & \frac{\times 7}{49} & \frac{\times 3}{24} & \frac{\times 9}{63} & \frac{\times 5}{35} & \frac{\times 6}{54}
\end{array} \\
& \begin{array}{rrrrrrrrrrrrrrrrr}
4 & 3 & 9 & 5 & 6 & 3 & 3 & 5 & 6 & 4 & 9 & 4 & 5 & 7 & 3 & 4 & 4 \\
\times 6 \\
\hline 24 & \times 6 & \times 9 & \times 9 \\
\hline 18 & \frac{\times 6}{36} & \times 7 & \times 5 \\
\hline 15 & \times 4 \\
\hline 20 & \frac{\times 5}{30} & \frac{\times 8}{32} & \frac{\times 8}{72} & \times 7 & \times 8 & \times 8 & \times 9 & \times 5 & \frac{9}{27} & \frac{9}{36} & \times 3 \\
\hline 12
\end{array}
\end{aligned}
$$

㩕

MATH 4
(Parentheses) in the PUISOPRINTIN PATSH

Comple the problems on each pumpkin.
Remember to simplify inside the parentheses first. Use scratch paper if you need more room.

I. Mathematical operations must be performed in a certain order. Write the following operations in the correct order in the box below.

ADD:SUBTRACT PARENTHESES MULTIPLY:DIVIDE EXPONENTS

1. Parentheses
2. Exponents
3. Multiply and Divide
4. Add and Subtract
5. If one operation is not present in a problem, skip it and go to the next operation. In the problem $3+4 \times 7$, there are no parentheses or exponents, so you would skip those steps and go to the next. Multiplication is the first step in this example. For each problem below, write which step you would complete first using the order of operations.

$(4+2) \times 4^{2}-1=$	Parentheses
$4-2+1=$	Subtract
$4+2 \times 4^{2}-1=$	Exponents
$4+2 \times 3-1=$	Multiply

3. Write the phrase that can help you remember the order of operations.
P ﹎e - a s e $E \times$ c u s e M y

4. Complete each problem using the order of operations. Use scratch paper if you need more room. Remember, if you have both multiplication and division or addition and subtraction in the same problem, you work from left to right.
$10-4+(5 \times 5)=31 \quad 20-(8 \times 2)=4$
$(3+5) \div 2=4 \quad 5 \times(6-3)+7=22$
$4^{2}+(15 \div 3)=21 \quad 6 \times 4+5-10=19$
$12-(3 \times 2)+2^{2}=10 \quad 2^{2} \div 2+(4 \times 1)=6$
5. Luis' family has a llama farm in the mountains of Peru. They bought five new llamas and are building a corral for them. Using the diagram, find how many feet of fencing they will need to build the new corral.
6. Luis knows that they need at least 2,000 sq ft of grass for the five new llamas. Is the new corral big enough? What is the area of the new corral?

$$
\text { Yes. } 2,400 \mathrm{sq} \mathrm{ft}
$$

3. Find the congruent shapes and color each set the same color.

Read with your parent or teacher It's time to take your next Multiplication Mastery Assessment. Have your parent or teacher quiz you on Multiplication Set C, using the Multiplication Mastery Chart on page 395

Parent/Teacher: Indicate which facts from Set C the student has mastered in the "Mastered" column on page 395. Your student will continue to review and practice these facts throughout the course
. Which fraction is the greatest? Divide and shade the shapes to find out. Circle the greatest fraction.

$\frac{3}{4}$

$\frac{2}{3}$

MATH 4 Q

DIVISION

in the Garden

Complete each division problem in the rose garden picture. Even if you can do these problems in your head, you should practice using the four long division steps: divide, multiply, subtract, and bring down. You can use the visual below to help you remember the steps.

Long Division Steps

Review
I. Fill in the missing information. The first one has been done for you.

2. Shade half of each shape, and then write the fraction that represents the shaded part of the shape.

3. Complete the problems.

4. Complete each problem using the order of operations. Use scratch paper if you need more room.
$5^{2} \div(25 \div 5)=5 \quad 4 \times(11-8) \times 5=60$
$16+(3 \times 8)=40 \quad 22-(6 \times 3)+2=6$

\diamond Multiplication Fact \diamond Practice

Practice Set D for 10 minutes or more by doing Musical Multiplication or using flashcards. Then complete the problems in this section.

12	11	12	8
$\begin{array}{r}12 \\ \times 3 \\ \hline\end{array}$	+ 12	$\begin{array}{r} \\ \times 4 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times 4 \\ \hline\end{array}$
36	132	48	32
12	3	8	6
+12	$\begin{array}{r} \\ \times 12 \\ \hline\end{array}$	+9	$\begin{array}{r}\times 9 \\ \hline\end{array}$
144	36	72	54
12	6	12	8
+ 8	+12	$\begin{array}{r} \\ \times \quad 7 \\ \hline\end{array}$	+ 5
96	72	84	40
12	7	5	9
$\begin{array}{r} \\ \times \quad 9 \\ \hline\end{array}$	+12	+12	$\begin{array}{r} \\ \times 4 \\ \hline\end{array}$
108	84	60	36
4	12	9	5
+ 12	+11	+12	+6
48	132	108	30
12	8	12	6
$\begin{array}{r}12 \\ \times 6 \\ \hline\end{array}$	+12	$\begin{array}{r} \\ \times 6 \\ \hline\end{array}$	+6
60	96	72	36

[3/

3. Complete each problem on scratch paper.
21
$2 \longdiv { 4 2 }$
$3 \longdiv { 1 2 }$
36
$4 \longdiv { 1 2 }$
$4 \longdiv { 4 8 }$

4. Complete each problem using the order of operations. Use scratch paper (Please) if you need more room. $\underset{\mathrm{My} \times \text { Dear }}{\text { Excuse }^{2}}\left\{3^{2}-(16 \div 4)=5 \quad 2 \times(8+2)-5=15\right.$ Aunt Sally - $12+(5 \times 6)=42$

$$
6^{2}-20+(4 \times 3)=28
$$

5. We don't know how many animals Noah had on the ark. Let's suppose that there were 235,174 animals on the ark. How many animals were there rounded to the nearest thousand? Rounded to the nearest hundred thousand?

235,000
 200,000

- Jenny Phillips

MATH 4

1) A Franco is the manager of Russo's Pizzeria. He created the following graphs to help him improve sales at the restaurant. Answer the graphs to help him improve sales at the restaurant. Answer the questions at the bottom of the page using these three graphs.

$=6$ pizzas

Days

I. On Dec. 17, what were the two most popular pizzas?
2. What was the busiest day of the week?
\qquad pepperoni, supreme Friday \qquad $\$ 3,000$
3. How much profit did the restaurant make in November 2021? \$3,000
4. How many customers ate at Russo's Pizzeria on Tuesday? 35
5. How many supreme pizzas were sold on Dec. I7? 33 35
6. How many more cheese pizzas were sold than sausage?
\qquad
\qquad 85
8. Which day of the week is Russo's Pizzeria closed? Sunday
9. How many Hawaiian and cheese pizzas were sold on Dec. 17? 42
10. Russo's was closed for two weeks for renovations and had no sales during that time. During which month did the renovations probably happen, based on the sales? February
II. Franco wants to have a "Buy One, Get One Free" sale on the slowest days to help bring in more customers. On which two days should he have the sale? Tuesday and Wednesday
12. Russo's Pizzeria is busiest in the summer. How much more profit did it make in July than in November? $\begin{array}{r}\$ 5,000 \\ \hline\end{array}$
I3. How many customers did Russo's Pizzeria have for the entire week? \qquad 345

Math 4 Answer Key

(t) MATH 4

0600000000000006 00000000000
0 Order \#5
$10 \times \underline{6}=\underline{60}$
$\underline{6} \times \underline{10}=\underline{60}$
$60 \div 6=10$
$\underline{60} \div 10=6$
Fact Family for $6,10, \underline{60}$

0000000000000006
Order \#6
$\underline{2} \times \underline{12}=\underline{24}$
$12 \times 2=24$
$24 \div 12=2$
$\underline{24} \div 2=12$
Fact Family for $2,12,24$

0000000000000000
Order \#7
5 $\times 6=\underline{30}$
$\underline{6} \times \underline{5}=\underline{30}$
$30 \div 6=5$
$30 \div \underline{5}=6$
Fact Family for $5,6, \underline{30}$

0000000000000006
Order \#4
$3 \times \underline{4}=\underline{12}$
$\underline{4} \times \underline{3}=12$
$12 \div 3=\underline{4}$
$12 \div \underline{4}=3$
Fact Family for $3,4,12$
0ि100200
0000000000000000
Order \#8
$3 \times \underline{8}=24$
$\underline{8} \times \underline{3}=\underline{24}$
$24 \div 3=8$
$24 \div 8=3$
Fact Family for $3,8,24$

Isaiah wants to put the name of each customer on the
correct bag of cookies. Use the alphabet code below to
figure out the name of each customer he should write.

(6) $A \frac{m}{1} \frac{y}{25}$
(4) $\frac{\mathrm{J}}{10} \frac{\mathrm{e}}{5} \frac{\mathrm{n}}{14}$
(5) $\frac{R}{18} \frac{e}{5} \frac{x}{24}$
(7) $\frac{E}{5} \frac{1}{12} \frac{i}{9}$
(8) $\frac{S}{19} \frac{a}{1} \frac{m}{13}$

Lesson Practice

I. Draw a mirror image to show reflectional symmetry. If desired, you may color the images.

2. Circle the images that have rotational symmetry (the image can be rotated less than one full turn and still look the same).

3. Draw any lines of symmetry on each picture. Write the number of lines of symmetry under each picture.

I. Complete each division problem. Use scratch paper if you need more room.
21
$3 \longdiv { 6 3 }$
$2 \longdiv { 2 4 }$
$\frac{22}{4 \longdiv { 8 8 }}$

2. Find the factors for each circled number.

16	12	15
1×6	1×12	1×15
2×3	2×6	3×5
$1,2,3,6$	3×4	$1,3,5,15$

3. Every year the students at Robin's school have a Christmas food drive for the local food shelter. In which years did they collect more than 250 items?

4. Determine if each fraction is greater than, less than, or equal to $\frac{1}{2}$.

5. How many more items did they collect in 2018 than in 2016?

$$
75
$$

6. How many items did they collect altogether in 2019 and 2020? 625
7. If the children in Robin's school collect 50 more items in 2021 than they did in 2020, how many items will they collect? Shade in the bar graph to show the amount.

375

MATH 4

I. Fill in the missing information to make equivalent fractions.

2. Subtract and add.

4,000,000
$\frac{-2,167,324}{1,832,676}+\frac{22,418}{438,040}$

(E) $=4$ games
3. If Pink Lightning has won 10 games, how many games does each ball symbol represent on the pictograph?
4. How many more games has The Force won than the Thunder Cats?
5. A team needs to win 20 games to win the
championship. How many more games do The Ducks need to win in order to win the championship?
. Complete each conversion.

7. Lateesha's family has a new rug The area of the rug is 18 sq feet and the perimeter is 18 feet. What is the length and width of the rug?

\diamond Multiplication Fact Practice \diamond Practice Set D for 10 minutes. Then complete the problems in this section.

I. Write the temperature shown on each thermometer in ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$. 4. Complete each problem using the

2. The Juarez family owns a sheep farm in New South Wales, Australia. They have 15 different flocks with about 100 sheep in each flock. About how many sheep do they have altogether?

1,500 sheep

3. After the roundup, the Juarez family counts the sheep to get an exact number. They count 4,932 sheep. How many sheep do they have rounded to the nearest thousand?

5,000 sheep order of operations. Use scratch
paper if you need more room.

$$
\begin{array}{ll}
30+(24 \div 8)=33 & 6+21 \div 3=13 \\
6^{2}-10+(2+2)=30 & 3 \times(20+5)-7=68
\end{array}
$$

\checkmark Multiplication Fact Practice \downarrow							
Practice Set D for 10 minutes. Then complete the problems in this sectio							
12	11	12	3	12	3	5	8
12 $\times 36$	+12	$\begin{array}{r}12 \\ \times 48 \\ \hline 48\end{array}$	+ $\times 12$	+12	+ 12	$\frac{5}{25}$	$\frac{\times 7}{56}$
12	6	12	9	12	7	5	5
+ 8	+12	$\begin{array}{r}\text { + } 7 \\ \hline 84\end{array}$		+ $\times 108$	+ 12	+12	+ 7
4	12	9	6	12	8	12	7
+ 12	+11	+12	+ 8	+ 5	+ 12	+ 6	

MATH 4
Remember that when the numerator and denominator of a fraction are the same, the fraction is equal to one whole. We can use this information to write fraction addition sentences with a sum of one Look at some examples below.

$$
\frac{4}{5}+\frac{1}{5}=\frac{5}{5}=1
$$

$$
\frac{3}{7}+\frac{4}{7}=\frac{7}{7}=1
$$

$$
\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1
$$

$$
\frac{2}{4}+\frac{2}{4}=\frac{4}{4}=1
$$

2. If we eat 4 of the 6 pineapples, what

3. Fill in the missing information to make each equation true.
$\frac{2}{8}+\frac{6}{8}=\frac{8}{8}=1 \quad \frac{4}{6}+\frac{2}{6}=\frac{6}{6}=1$
$\frac{7}{10}+\frac{3}{10}=\frac{10}{10}=1$
4. If 3 birds flew away, what fraction of the birds are left?

5. Add or subtract the fractions. Hint: Add or subtract the numerators, but the denominators stay the same.

6. Shade the thermometer on the left to show $70^{\circ} \mathrm{F}$. Shade the thermometer on the right to show $15^{\circ} \mathrm{C}$.

7. Divide and shade each of the shapes to show the fraction listed below it. Circle the smallest fraction.

8. Draw a line of symmetry for each picture.
9. List the first six multiples of 8 .
$8,16,24,32,40,48$
10. List the factors of 18 .
1×18
2×9
3×6
$1,2,3,6,9,18$

\diamond Multiplication Fact Practice \downarrow											
12	11	12	8	12	6	12	6	4	12	9	8
$\begin{array}{r} \times 3 \\ \hline 36 \end{array}$	$\begin{array}{r} \times 12 \\ \hline 132 \end{array}$	$\begin{array}{r} \times 4 \\ \hline 48 \end{array}$	$\begin{array}{r} \times 4 \\ \hline 32 \end{array}$	$\begin{array}{r} 8 \\ \times \quad 8 \end{array}$	$\begin{array}{r} \times 12 \\ \hline 72 \end{array}$	$\begin{array}{r} \times \quad 7 \\ \hline 84 \end{array}$	$\begin{array}{r} \times 6 \\ \hline 36 \end{array}$	$\begin{array}{r} \times 12 \\ \hline 48 \end{array}$	$\begin{array}{r} \times 11 \\ \hline 132 \end{array}$	$\begin{array}{r} \times 12 \\ \hline 108 \end{array}$	+ 5
12	3	9	3	12	7	5	5	12	8	12	8
+12	+12	$\begin{array}{r} \\ \times 4 \\ \hline\end{array}$	$\times 8$	$\begin{array}{r}12 \\ \times \quad 9 \\ \hline\end{array}$	$\times 12$	$\times 12$	\times	+ 5	+ 12	6	+9
144	36	36	24	108	84	60	30	60	96	72	72

- Jeny Phillips
${ }^{155}$

I. Fill in the four steps of long division in the box above. Then complete these division problems on scratch paper.

-

2. Add or subtract the fractions. Hint: Add or subtract the numerators, but the denominators stay the same.

Review

3. Complete each problem using the order of operations. Use scratch paper if you need more room.
$\begin{array}{ll}4^{2}+(3 \times 3)=25 & 4 \times(14-8)-2=22 \\ 23-15 \div 3=18 & 3^{2}+8-(2 \times 2)=13\end{array}$
4. Write a fraction next to each picture that tells the fraction of the set.
5. One plane takes off. What fraction of the planes are still on the ground?

- Multiplication Fact Quiz $\sqrt{ }$

Have your parent or teacher quiz you on the Set D multiplication facts below and circle any facts you missed. You will be doing targeted practice on these facts for the next few lessons.

12	12	12	12	12	12	12	12	12
$\times 3$								
36	$\frac{\times 12}{144}$	$\frac{\times 8}{96}$	$\frac{\times 5}{60}$	$\frac{\times 11}{132}$	$\frac{\times 7}{84}$	$\frac{\times 4}{48}$	$\frac{\times 9}{108}$	$\frac{\times 6}{72}$
9	3	11	8	5	6	4	7	2
$\frac{\times 12}{108}$	$\frac{\times 12}{36}$	$\frac{\times 12}{132}$	$\frac{\times 12}{96}$	$\frac{\times 12}{60}$	$\frac{\times 12}{72}$	$\frac{\times 12}{48}$	$\frac{\times 12}{84}$	$\frac{\times 12}{24}$

In this lesson you will use the data you collected from your
survey to create a bar graph using the blank graph.
Step I: Title the Graph
What question did you ask for your survey? Briefly
describe the topic of your survey and use that for the title
of your graph. Decide on a title and write it on the graph.
Step 2: Select a Scale
Remember, scales need to fit the data you collected. Look
at your data. What is your highest number? Choose a
scale that will fit your data. You can count by ones, twos,
fives, tens, or a different number. Make sure your scole will
allow your highest number to fit on your graph. Write the
numbers for your scale on the vertical side of the graph.
Step 3: Label the Graph
After you've written your scale on the graph, you can add
your labels. Label the vertical side with the words "Number
of People." Label the horizontal side with the topic of your
survey. Write the individual answer options along the
bottom of the graph.

- Jeny Phillips
 k

MATH $4 \otimes$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

PRIME or COMPOSite

Remember, a prime number can only be divided evenly by itself and one. Follow the directions below to color each prime number blue and each composite number green on the hundred chart.
I. The number 1 is neither prime nor composite. Color it yellow.
2. The number 2 is a prime number. Color it blue. Two is the only even prime number. Every other even number is composite. Color the other even numbers on the chart green.
3. The number 3 is a prime number. Color it blue. Every other multiple of 3 is a composite number. Skip count by 3 s , coloring each multiple of 3 green if it's not already colored.
4. The number 5 is a prime number. Color it blue. Every other multiple of 5 is a composite number. Color them green. (Multiples of 5 end in 5 or 0.)
5. The number 7 is a prime number. Color it blue Every other multiple of 7 is a composite number. Skip count by 7 s , coloring each multiple of 7 green if it's not already colored.
6. Every remaining number is a prime number. Color them blue. There should be 25 prime numbers on the chart.

- Jenny Phillips

Math 4 Answer Key

2. List the composite numbers you found above in order from least to greatest. Then circle all the odd composite numbers listed below.

3. Complete each division problem on scratch paper.

4. Ralph and Ernesto are collecting rocks for a rock collection. Today at the park, they found 4 black rocks and 6 shiny multicolored rocks. What fraction of their rock collection is made up of black rocks? $\frac{4}{10}$

(6) Targeted Multiplication ©f Practice any problems you missed in your Set D quiz in Lesson 49. Then complete the problems in thissection. Fact Practice												
12	4	12	7	8	9	12	12	12	12	12	12	12
$\begin{array}{r}\text { (} \\ \times 3 \\ \hline 36\end{array}$	+ 8	$\begin{array}{r}\text { P } 8 \\ \hline 96\end{array}$	+ 3	$\times 6$ $\times 48$	+9	$\begin{array}{r} \\ \times \quad 4 \\ \hline 48\end{array}$	+11	$\begin{array}{r} \\ \times 6 \\ \hline 72\end{array}$	+12 $\times 144$	$\begin{array}{r}\text { - } 5 \\ \hline 60\end{array}$	$\begin{array}{r}\text { a } \\ \times 7 \\ \hline 84\end{array}$	$\begin{array}{r}\text { a } \\ \times \quad 9 \\ \hline 108\end{array}$
9	6	11	3	5	5	4	7	2	6	3	8	6
+12	+ 3	$\times 12$ $\times 132$	+ 3	+ 12	+ 7	+ 12	$\begin{array}{r}\times 12 \\ \hline 84\end{array}$	$\begin{array}{r}\times 12 \\ \hline 24\end{array}$	$\begin{array}{r} \\ \times 7 \\ \hline 42\end{array}$		$\begin{array}{r}\text { + } 12 \\ \hline 96\end{array}$	$\begin{array}{r}\text { + } 12 \\ \hline 72\end{array}$

MRTH 4 Q

Better Butterflies
 Find the missing factor on each butterfly for the number at the top of the column. Use your multiplication facts or long division on scratch paper, if necessary.
 Note: Not every factor is shown for each number.

m

Math 4 Answer Key

I. Complete the problems.

$$
\begin{array}{rr}
61 \\
8 \longdiv { 4 8 8 } & 9 \longdiv { 5 4 9 }
\end{array}
$$

$$
\begin{array}{r}
346 \\
\times \quad 951 \\
\times \quad 2 \\
\hline 692
\end{array} \begin{array}{r}
582 \\
\times \quad 7 \\
\hline 6,657
\end{array} \begin{array}{r}
\times \quad 3 \\
\hline 1,746
\end{array}
$$

. Devin made a mistake when completing the division problem below. Can you find his mistake? Once you do, complete the problem correctly.

He forgot to bring down the 8 .

14	He forgot to bring down the
$6 \longdiv { 6 8 4 }$	$6 \longdiv { 6 8 4 }$
-6	$-\frac{6 \downarrow}{08}$
-24	$-\frac{6}{24}$
-24	
0	$\frac{-24}{0}$

Review

3. Fill in the missing numerators and denominators to make fractions equal to $\frac{1}{2}$.

$$
\frac{9}{18} \quad \frac{3}{6} \quad \frac{13}{26} \quad \frac{15}{30} \quad \frac{6}{12} \quad \frac{2}{4} \quad \frac{4}{8} \quad \frac{1}{2} \quad \frac{8}{16} \quad \frac{20}{40} \quad \frac{12}{24}
$$

4. Fill in the missing information to make equivalent fractions.

(5argeted Multiplication (of) Practice any problems you missed in your Set D quiz in
Lesson 49. Then complete the problems in this section.
Fact Practice Fact Practice

$$
\left.\begin{array}{rrrrrrrr}
12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 \\
\times 3 \\
\hline 36 & \frac{3}{144} & \frac{12}{96} & \frac{12}{60} & \frac{\times 11}{132} & \frac{\times 7}{84} & \frac{4}{48} & \frac{\times 9}{108}
\end{array}\right) \times \frac{6}{72}
$$

Lesson Practice

I. Find the perimeter of each triangle below.

16 cm

55 ft
 28 in

30 m
2. Find the area of each triangle below.

3. Joe, Myra, and Dorothea each drew a triangle. The area of each person's triangle is shown next to his or her name. Find the area of each triangle. Then write the name of each person under the correct triangle.

Joe- 32 sq in
Myra-40 sq in
Dorothea- 15 sq in

Name_Myra Name Dorothea

Name \qquad
4. Use your 12-inch ruler to measure all three sides of this triangle to the nearest inch. Label each side, and then find the perimeter and the area.

MATH 4

Review

I. Circle all the right triangles. Hint: Right triangles all have a right, or 90 degree, angle.

2. Find the missing factors; use long division if necessary.
84
$2 \times \frac{42}{21}$
$4 \times \frac{21}{14}$
6×2
63
1×63

2×20
5×8
3×21
10×4

3. Convert the improper fractions to mixed numbers.

Practice any problems you missed in your
Set D quiz in Lesson 49 . Then complete the problems in this section.

6	10	6	4	3
$\times 7$	$\begin{array}{r}106 \\ \hline\end{array}$	$\times 12$	+ 11	+3
42	60	72	44	9
12	12	7	5	9
$\begin{array}{r} \\ \times 8 \\ \hline\end{array}$	+ 9	+12	+12	$\times 8$
96	108	84	60	72
12	12	8	12	3
$\begin{array}{r} \\ \times 7 \\ \hline\end{array}$	+ 5	$\times 12$	+ 6	+6
84	60	96	72	18
5	4	12	9	7
$\times 7$	$\times 12$	+ 11	+12	+6
35	48	132	108	42
5	12	11	12	4
$\times 5$	$\times 3$	+ 12	$\begin{array}{r}12 \\ \times \quad 4 \\ \hline\end{array}$	+ 9
25	36	132	48	36
3	12	3	8	7
$\times 8$	$\times 12$	+12	$\times 6$	+ 9
24	144	36	48	63

Welcome to the carnival! You are the guesser for a game called "Guess My Name." You already know the ages of all the children shown above, and you have to guess each child's name. Solve the story problems presented by each mystery child below. When you find how old a child is, write the name above the correct child.

Challenge Problem

Nathan's little sister, Denise, is 3 years younger than he is. His brother, Robert, is 3 times as old as Denise.

If Robert is 12 years old, is Nathan 6, 7, or 8 years old?

7
How old is Denise?

182
$6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6=$
3. Complete each problem.
$\begin{array}{rr}141 & 161 \\ 3 \longdiv { 4 2 3 } & 6 \longdiv { 9 6 6 }\end{array}$

$$
\begin{array}{r}
41 \\
8 \longdiv { 3 2 8 }
\end{array}
$$

$$
\begin{array}{rrr}
\frac{43}{5} & 7 \longdiv { 2 6 } & 4 \longdiv { 2 5 2 }
\end{array}
$$

Review
I. Find the perfect squares.

$$
4^{2}=16 \quad 3^{2}=9 \quad 6^{2}=36
$$

2. Convert each problem from factored form to exponent form.
$4 \times 4=$

$3 \times 3 \times 3 \times 3=3^{4}$
$7 \times 7 \times 7 \times 7 \times 7=$

$$
\begin{equation*}
\frac{8}{12}+\frac{3}{12}=\frac{11}{12} \quad \frac{7}{8}-\frac{3}{8}=\frac{4}{8} \quad \frac{5}{6}+\frac{1}{6}=\frac{6}{6} \tag{5}
\end{equation*}
$$

4. Find the area of each shape. Hint: Find the area of a triangle by multiplying the base by the height and dividing by 2 .

$$
24 \mathrm{sq} \mathrm{ft}
$$

5. Add or subtract the fractions below.

Read with your parent or teacher

 $\left\{\begin{array}{l}\text { Reference } \\ \text { Gude on pase } \\ \text { 394. }\end{array}\right.$ It's time to take your next Multiplication Mastery Assessment. Have Multiplication Mastery Chart on page 395.

Parent/Teacher: Indicate which facts from Set D your student has mastered in the "Mastered" column on page 395.

Students will continue to practice all of their multiplication facts throughout Unit 3, but will not be prompted to practice the sets daily. If your student has not passed off all the facts, continue to work with him or her to pass them off. In Unit 4 you will be prompted to review the sets using the Multiplication Mastery Chart.
θ MATH 4

Math 4 Answer Key

Read the following information aloud to the child: Unit
assessments give you practice with the mathematical concepts
learned in this course without having you overpractice concepts
that you have mastered. These assessments also give you
practice working on exercises for an extended period of time.
This helps you to extend focus and attention span and to be
better prepared for any type of testing you will have to do in the
future.
Here are some tips. First, make sure to read the instructions
carefully. Sometimes you can get answers wrong simply because
you did not understand the instructions. Second, do not rush
through exercises you think you already know. Instead, make
sure to do your work carefully. Finally, if you feel you are having
trouble focusing, take a quick break to do something else, like
ten jumping jacks. There are no videos for Lessons 59-60.

Convert each problem from factored form to exponent form.

Fill in the perfect squares in the charts. The first one has been done.

4^{2}	16
8^{2}	64
1^{2}	1

6^{2}	36
9^{2}	81
2^{2}	4

3^{2}	9
5^{2}	25
7^{2}	49

Additional Practice
Convert each problem from exponent form to factored form.

Fill in the missing information. Example: $2^{2}=2 \times 2=4$ $5^{2}=5 \times 5=25 \quad 7^{2}=7 \times 7=49$

$$
3^{2}=3 \times 3=9 \quad 9^{2}=9 \times 9=81
$$

\% PERIMETER \& AREA (LESSONS 36 \& 56)

Write the area and perimeter beneath each shape.

Area $=36$
Perimeter $=$ \qquad sqcm cm

Area $=$ \qquad 48 sqft

都

Find the area of each shape.

8

 imeter $=\underline{32} \mathrm{ft}$$\qquad$ ft

Area $=$ \qquad 2 sq in
Perimeter $=$ \qquad 6 in 16 in

Area $=$ \qquad 30 sq
Perimeter $=$ \qquad m

Jenny Philips

MATH 4

\% ORDER OF OPERATIONS (LESSON 40)

Complete each problem using the order of operations. Use scratch paper if you need more room.

$$
\begin{aligned}
& 8+2^{2}-(3 \times 3)=3 \\
& 40 \div 4-(18 \div 2)=1 \\
& 12+(14-6) \times 2=28 \\
& 42-6^{2}+(4 \times 7)=34
\end{aligned}
$$

:.:.....:.: $\quad \square$ Additional Practice

Write the phrase used to help remember the order of operations.
$P \perp E A S \underline{E}$
$E \times \underline{C} \cup \underline{S}$
M Y
DEAR \qquad S A LLL Y

Complete each problem using the order of operations. Use scratch paper if you need more room.
$(28+7) \div 5+11=18$
$16-4^{2}+(6 \times 8)=48$
$24+(16-8) \times 2=40$

- Additionol Proctice

In the box on the left, write the formula for finding the area of a rectangle. In the box on the right, write the formula for finding the area of a triangle. Refer to Lessons 36 and 56 if necessary.

Find the perimeter of each shape.

Perimeter $=\underline{48} \mathrm{~cm}$

Perimeter $=23$ in

Perimeter $=\underline{48} \mathrm{~mm}$ Find the area of each shape.

Circle the prime numbers and cross out the composite numbers.

$>\quad$ Additional Practice

Fill in the blank. Refer to Lesson 52 if necessary.
Prime numbers have exactly two whole number factors the number itself and the number l.

List all the prime numbers from 2 to 20 . There are 8 in total.

2	3	5	7	11	13	17	19

What fraction of the Christmas ornaments do not have stripes?

Complete the following problems.
$\frac{5}{9}+\frac{3}{9}=\frac{8}{9} \quad \frac{8}{12}-\frac{7}{12}=\frac{1}{12} \quad \frac{6}{7}+\frac{1}{7}=\frac{7}{7}$
$=1$

Fill in the missing information to make equivalent fractions.

Three-sevenths of the Christmas trees have yellow stars. What fraction of the Christmas trees have red stars?

Complete the following problems.
$\frac{3}{4}-\frac{2}{4}=\frac{1}{4} \quad \frac{4}{15}+\frac{5}{15}=\frac{9}{15} \quad \frac{5}{8}-\frac{1}{8}=\frac{4}{8}$

쏘N

MATH $4 \square$

$: \quad$ Additional Practice

Circle the greatest volume in each box.

Complete each problem on scratch paper.

A.........:.: \square Additional Practice <............:

Fill in the four steps of long division in the box to the right. Then complete the division problems on scratch paper.

231
$3 \longdiv { 6 9 3 }$
41
$8 \longdiv { 3 2 8 }$
$7 \longdiv { 7 1 }$
$4 \longdiv { 1 2 8 }$

Z IMPROPER FRACTIONS \&

Draw a line from the improper fraction to the correct mixed number.

Shade the shapes to show each improper fraction, and then convert it to a mixed number.

Shade the shapes to show each improper fraction. Then write the mixed number.

$3 \frac{3}{8}$

MATH 4

\%) MULTIPLES \& FACTOR PAIRS (LESSONS 42 G54)

List the next six multiples of each number below.

Write all the factors for each number below.

Find the missing factors; use long division if necessary.

48	96	60
$2 \times \frac{24}{12}$	1×96	2×30
$4 \times \underline{12}$	$3 \times \frac{32}{16}$	5×12
$8 \times \frac{6}{6}$	6×16	10×6

Find the missing factors; use long division if necessary.

32	72	40
2×16	3×24	5×8
4×8	$6 \times \underline{12}$	10×4

List all the factors of 18 from least to greatest.

+++++
0 Jenny Phillips
197

MATH 4

This shape has: - 4 sides - 4 right angles - 2 pairs of parallel sides - This shape is RED. - ALL sides are equal in length.	
This shape is a $\underline{S} \underline{Q} \cup A-\frac{E}{6}$	
This shape has: - 4 sides - This shape is BLUE. - I pair of parallel sides	This shape has: - 4 sides - 2 pairs of parallel sides - Opposite sides are equal in length. This shape has: - 4 sides - NO right angles - 2 pairs of parallel sides - ALL sides are equal in length.
	$\frac{P}{5} A \underline{R} \underline{A} \underline{L} \underline{L} \underline{E} \underline{L} \underline{O} \underline{G} \underline{R} \underline{A} \underline{M} \quad\left[\begin{array}{l} \text { This shop is } 0 \\ \frac{R}{3} \\ H \\ O \end{array} \underline{M} \underline{U} \underline{S} .\right.$
This shape has: - 4 sides - 4 right angles - 2 pairs of parallel sides - This shape is BLUE. - Opposite sides are equal in length.	
$\underline{R} \underline{E} \sum_{2}^{T}-\begin{aligned} & \text { This shape is a } \\ & T \\ & N \\ & L \\ & E \end{aligned} .$	
This shape has: - 4 sides $\quad \mathrm{NO}$ right angles - 2 pairs of parallel sides - This shape is RED. - ALL sides are equal in length.	What quadrilateral can be used to catch the cat?
$\underline{R} \underline{H} \prod_{8}^{\text {This shape is o }} \mathbb{O} \underline{B} \cup \underline{S} .$	$\frac{A}{1} \frac{T}{2} \frac{R}{3} \frac{A}{4} \frac{P}{5}-\frac{E}{6} \frac{Z}{7} \frac{O}{8} \frac{I}{9} \frac{D}{10}$

- Jenny Phillips

221

MATH 4

Review

I. Talia is 6 years old. Her older brother, Loto, is three times Talia's age. Their sister Kalama is half of Loto's age. How old is Kalama?

9 years old
2. Roger's family picked 89 apples from their apple tree They used 43 apples to make applesauce. They gave half of the remaining apples to their neighbors, the Smiths. How many apples did they give to the Smiths?

$$
23 \text { apples }
$$

3. Camila practiced her trombone for 273 minutes this week. Sofia practiced her guitar for 43 minutes every day for 5 days this week. Who practiced more this week, Camila or Sofia?

Camila
4. Kaki had 60 crayons. Then he bought 8 new boxes of crayons. Each box has 24 crayons. How many crayons does Kaki have altogether?

252 crayons

5. Louie baked 4 batches of 12 cookies. Then he divided the cookies evenly into 8 boxes. How many cookies are in each box?

6 cookies

6. Keshawn and Paul have $\$ 42.50$ to spend at the county fair. Keshawn spends $\$ 16.50$ on cotton candy and milkshakes. Paul spends $\$ 14.00$ to ride the Ferris wheel and the roller coaster. How much money do they have left to spend at the fair?
 $$
\$ 12
$$
 \section*{$\$ 12$}
 \section*{$\$ 12$}
7. Create your own two-step story problem in the space below and have your teacher, parent, or sibling complete it.

Answers will vary.

3	2	8	4	12	6	5	7	12	6	4	5	12	5	6
$\begin{array}{r} \\ \times 3 \\ \hline\end{array}$	+ 0	$\begin{array}{r} \\ \times 11 \\ \hline\end{array}$	$\begin{array}{r} \\ \times 4 \\ \hline 16\end{array}$	$\times 3$	$\begin{array}{r} \\ \times 10 \\ \hline\end{array}$	+6	$\times 3$	$\begin{array}{r} \\ \times \\ \hline\end{array}$	+3	+ 5	$\times 7$	+ 4	+3	+66
9	0	88	16	36	60	30	21	60	18	20	35	48	15	36

© MATH 4

(v) MATH 4

现
MATH 4 @

Math 4 Answer Key

Cut out the cards on the next page. Lay them star side up on the floor according to the image shown to the right.
To start the game, stand in the center and face the card with the black star. Now turn 90 degrees clockwise and pick up the card in front of you. Without turning, take a step forward and STAND IN THE PLACE of the card you picked up, and then read the card.

Read the information to learn more about each state the
 Lewis and Clark expedition traveled through. Then follow the instructions to find which card you will travel to next. DO NOT TURN unless instructed to do so. Each time you pick up a card, take a step forward and stand where the card was on the floor. Continue until you have collected all the cards. Use the letters underlined in each state's name to find out who traveled with Lewis and Clark.

Lewis and Clark had a companion who became famous for being a member of the first American overland expedition from the Mississippi River to the Pacific Coast and back. He made it the entire journey. This companion had black hair and is called a Newfoundland. His name was

$$
\frac{S}{1} \frac{e}{2} \frac{a}{3} \frac{m}{4} \frac{a}{5} \frac{n}{6} \frac{t}{7} \frac{h}{8} \frac{e}{9} \quad \frac{D}{10} \frac{0}{11} \frac{a}{12}
$$

Review

I. Which geometric transformation (translation, rotation, or reflection) needs to happen to move the blue triangle directly on top of the green triangle?

\longrightarrow reflection (Rotation would also be correct.

2. Complete each problem. Use scratch paper if necessary.
$6 \longdiv { 2 2 2 }$
$3 \longdiv { 1 9 2 }$
$8 \longdiv { 4 9 6 }$
$7 \longdiv { 1 9 6 }$
$8 \times 30,000=240,000 \quad 12 \times 500=6,000$
3. Circle the rhombuses below (quadrilaterals with four equal sides).

4. Write each digit in the correct place value position on the lines at the bottom.
a) 8 in the tens place
c) 4 in the thousands place
e) 0 in the hundreds place
g) I in the ones place
b) 7 in the millions place
d) 3 in the hundred thousands place
f) 2 in the ten millions place
h) I in the ten thousands place

4, \qquad

MATH 4

Now the fractions have common denominators and can be easily subtracted. Remember to subtract the numerators only and keep the denominator the same.

Step 2: Replace $\frac{1}{3}$ with $\frac{3}{9}$ and subtract the fractions.

$\frac{5}{9}-\frac{3}{9}=\frac{2}{9}$

Lesson Practice

I. Fill in the missing information to add or subtract the fractions.

2. Add the fractions.
$\frac{x_{3}}{x_{6}}+\frac{2}{6}=\frac{5}{6}$
$\frac{3}{12}+\frac{X_{3}}{\not y_{12}}=\frac{6}{12} \quad \frac{3}{10}+\frac{\not 24}{\not 210}=\frac{7}{10}$
$\frac{X_{3}}{\not X_{9}}+\frac{4}{9}=\frac{7}{9} \quad \frac{9}{16}+\frac{X_{2}}{\not 8_{1}}=\frac{11}{16} \quad \frac{2}{8}+\frac{X_{4}}{\not X_{8}}=\frac{6}{8}$
3. Subtract the fractions.

$$
\begin{aligned}
& \frac{4}{6}-\frac{X_{3}}{Z_{6}}=\frac{1}{6} \\
& \frac{812}{5}-\frac{5}{20}=\frac{7}{20} \\
& \frac{15}{18}-\frac{\not 26}{6^{18}}=\frac{9}{18} \\
& \frac{5}{10}-\frac{\not 24}{\boxed{510}}=\frac{1}{10} \\
& \frac{515}{721}-\frac{5}{21}=\frac{10}{21} \\
& \frac{8}{9}-\frac{\not 26}{\not z^{6}}=\frac{2}{9}
\end{aligned}
$$

2. Circle the parallelograms (quadrilaterals with two pairs of parallel sides).

3. Color in the rectangles above (quadrilaterals with 4 right angles).
4. Label each tick mark on the number line with the missing fractions and mixed numbers.

5. Circle the prime numbers below; draw a box around the composite numbers. Hint: One of the numbers will not have a circle or a box.

$$
\begin{array}{llllll}
24 & 5 & 10 & 21 & 80 & 19 \tag{36}\\
\hline
\end{array}
$$

6. Write a fraction next to each bug that tells the part of the set that bug represents.

7. Complete each problem. Use scratch paper if necessary.
$4 \longdiv { 5 6 }$
$9 \longdiv { 3 3 3 }$
$5 \longdiv { 2 6 5 }$
$3 \longdiv { 2 8 2 }$

$$
\begin{array}{ll}
5 \times 7,000=35,000 & 12 \times 40=480 \\
3 \times 40,000=120,000 & 8 \times 900=7,200
\end{array}
$$

8. Add or subtract the fractions.

$$
\frac{7}{10}+\frac{2}{10}=\frac{9}{10} \quad \frac{3}{6}-\frac{2}{6}=\frac{1}{6} \quad \frac{3}{4}+\frac{2}{4}=\frac{5}{4}
$$

9. One of the answers in $\# 8$ is an improper fraction. Convert it to a mixed number.

$$
\frac{5}{4} \quad 1 \frac{1}{4}
$$

Lesson Practice

I. Circle the fractions in the balloons below that are already in simplest form and

2. Draw a line from the fraction on the top row to its simplest form on the bottom row.

3. Write each fraction in simplest form. Remember, you may need to divide the fraction more than once to reduce it to simplest form.

$\frac{7}{21} \quad \frac{1}{3} \quad \frac{8}{12} \quad \frac{2}{3} \quad \frac{12}{30} \quad \frac{2}{5}$

MATH 4

1. Eli is ice-skating. He skates south for a while and then turns 90 degrees in a clockwise direction and continues skating. Which direction is he going now? west
2. Which geometric transformation (translation, rotation, or reflection) needs to happen to move the blue triangle directly on top of the green triangle?
translation

3. Draw a geometric transformation of this shape by reflecting it across the red line.

4. What is the most specific name of a quadrilateral that is both a rhombus (has 4 equal sides) and a rectangle (has 4 right angles)?
a square

Review

5. Complete each problem. Use scratch paper if necessary.

$$
\begin{array}{ll}
6 \longdiv { 5 9 } \\
6 \longdiv { 3 5 4 } & 3 \longdiv { 2 5 8 } \\
7 \times 40,000=280,000 & 12 \times 60=720 \\
5 \times 5,000=25,000 & 12 \times 70=840 \\
8 \times 400=3,200 & 12 \times 30=360 \\
\frac{7}{24}+\frac{\not 13}{1412}=\frac{10}{12} & \frac{11}{18}-\frac{\not 26}{68}=\frac{5}{18}
\end{array}
$$

6. Circle each type of quadrilateral that applies.

7. Label each triangle below as right, acute, or obtuse. Remember, a right triangle has a right angle, an obtuse triangle has an obtuse angle, and an acute triangle has three acute angles.

8. Estimate the answer by rounding to the nearest ten thousand. Then complete the problem to see how close your estimate is.

$$
\begin{array}{rr}
158,354 & 160,000 \\
+\quad 22,351 \\
\hline 180,705 & +20,000 \\
\hline 180,000
\end{array}
$$

9. Pablo is 14 years old. His brother Luca is half of Pablo's age. His sister Ella is three times Luca's age. How old are Ella and Luca?

Ella 21 years old
Luca 7 years old

3	7	11	4	7	9	11	6	8	5	6	3	6	9	8
$\begin{array}{r}\times 9 \\ \hline\end{array}$	+88	$\begin{array}{r}11 \\ \times 4 \\ \hline\end{array}$	+9	+12	$\times 7$	12 $\times 12$	$\times 7$	+12	$\times 9$	+12	+ 8	$\times 9$	+ 12	+ 9
27	56	44	36	84	63	132	42	96	45	72	24	54	108	72

${ }^{218}$

Lesson Practice

I. Find the lengths of the missing sides. Then find the perimeter of each irregular shape.

$\begin{array}{ll}\mathrm{A} & =8 \mathrm{ft} \\ \mathrm{B} & =7 \mathrm{ft}\end{array}$
Perimeter $=50 \mathrm{ft}$
2. Find the area of each irregular shape by dividing it into smaller shapes, finding the area of each shape, and adding those areas together. The first shape has been divided for you.

 - Jeny Philips

Review

I. Circle the fraction that is not in simplest form and reduce it.

$$
\frac{3}{4} \quad \frac{1}{15} \quad \frac{2}{3} \quad \frac{2}{8} \quad \frac{1}{2} \quad \frac{3}{25} \quad \frac{1}{4}
$$

2. Reduce each fraction to its simplest form.

$$
\begin{aligned}
& \text { Remember, you may need to divide more than once. } \\
& \frac{3}{9} \quad \frac{1}{3} \quad \frac{4}{12} \\
& \frac{1}{3}
\end{aligned} \frac{2}{8} \quad \frac{1}{4} \quad \frac{5}{15} \quad \frac{1}{3}
$$

3. Find a common denominator to add or subtract the fractions.

$$
\begin{aligned}
& \frac{X_{4}}{\not Z 12}+\frac{3}{12}=\frac{7}{12} \quad \frac{12}{48}+\frac{X_{6}}{84}=\frac{18}{48} \quad \frac{\not \partial 15}{\not X 20}+\frac{2}{20}=\frac{17}{20} \\
& \frac{9}{15}-\frac{\not 26}{5 / 515}=\frac{3}{15} \quad \frac{16}{24}-\frac{\not 28}{\not 824}=\frac{8}{24} \quad \frac{5}{8}-\frac{\not L^{4}}{\not 28}=\frac{1}{8}
\end{aligned}
$$

4. Write all the multiples of 6 between 24 and 66.

$$
24,30,36,42,48,54,60,66
$$

5. Write the measurement of each clockwise turn in degrees.

180°

270°
6. Which geometric transformation (translation, rotation, or reflection) needs to happen to move the blue triangle directly on top of the green triangle?
rotation

7. Complete each problem. Use scratch paper if necessary.
$2 \longdiv { 1 3 6 }$
$7 \longdiv { 2 3 8 }$
$4 \longdiv { 2 5 2 }$
$9 \longdiv { 5 1 3 }$

\triangle Complete today's Math 4 Mental Math Map Mysteries activity.
Δ There is no video for this lesson. Read the mini lesson.

Mini Lesson

Long division is a method that can be used to divide two numbers. To perform long division, we use a division bracket. No matter how many digits are in the dividend, you can follow the four steps for long division to find the answer. In this lesson you will work with dividends up to four digits.

2. Reduce each fraction to its simplest form.

3. Add the fractions by creating fractions with common denominators.

$$
\frac{x^{3}}{8_{9}}+\frac{2}{9}=\frac{5}{9} \quad \frac{4}{6}+\frac{8^{4}}{8_{6}}=\frac{8}{6} \quad \frac{5}{16}+\frac{x_{4}}{*_{16}}=\frac{9}{16}
$$

4. One of the answers in \#3 above is an improper fraction. Convert it to a mixed number.

$$
\frac{8}{6}=1 \frac{2}{6}
$$

5. Complete each problem. Use scratch paper if necessary.
$2 \longdiv { 1 , 7 2 6 }$
$6 \longdiv { 2 , 8 1 4 }$
$9 \longdiv { 3 4 2 7 8 }$
$3 \longdiv { 1 , 4 5 8 }$
$7 \longdiv { 4 , 6 5 5 }$
$5 \longdiv { 8 , 3 1 5 }$

Lesson Practice

What animal sees in slow motion? Assemble the tangram puzzle to find the answer!

Cut out the tangram pieces. On each piece you will see a division problem, quotient, or both. Match the division problem on one piece to the correct quotient on another tangram. When you've completed the puzzle, it will be in the shape of the animal that sees in slow motion. Write the name of the animal on the line provided under the question.

Need help?

The name of this animal can be found on the tangram pieces. Look at each quotient and use the letter in the circle on that piece to fill in the blanks below. The first letter of the animal's name is already given.

$$
S \frac{Q}{187} \frac{U}{17} \underbrace{}_{735} \frac{R}{46} \frac{R}{46} \underbrace{\frac{E}{19}}_{49} \frac{L}{1.233}
$$

3. Cross out the 2D shapes and circle the 3D shapes.

4. What geometric solids do these real objects represent?
a) I have 5 vertices and 5 faces:
b) I have 6 congruent faces and
8 vertices:
c) I have 2 circular faces and
no vertices:
d) I have no edges, vertices, or faces:
2. Label the parts of the geometric solids below.

226

Q MATH 4

Review

I. Circle the trapezoids (quadrilaterals with one set of parallel sides).
5. Reduce each fraction to its simplest form.

$$
\frac{12}{14} \quad \frac{6}{7} \quad \frac{8}{10} \quad \frac{4}{5} \quad \frac{16}{30} \quad \frac{8}{15} \quad \frac{6}{9} \quad \frac{2}{3}
$$

2. Complete each problem. Use scratch paper if necessary.
$4 \longdiv { 1 , 4 2 8 }$
$7 \longdiv { 3 , 5 8 4 }$
$3 \longdiv { 2 , 0 2 2 }$
$2 \longdiv { 1 , 1 6 8 }$
3. Write each perfect square.
4. Complete each problem.

$$
\begin{array}{rrr}
4,000,000 & 700,000 & 6,000,000 \\
\frac{-751,069}{3,248,931} & \frac{-52,935}{647,065} & \frac{-531,089}{5,468,911}
\end{array}
$$

$$
\begin{array}{rllll}
4^{2}=16 & 7^{2}=49 & 3^{2}=9 & 6^{2}=36 & 12^{2}=144 \\
\text { 7. Write all the multiples of } 7 \text { between } 63 \text { and } \| 2 . \\
63,70,77,84,91,98,105,112
\end{array}
$$

4. Find the measurements of the missing sides. Then find the perimeter and area of each shape.

Lesson Practice

I. Circle the image if you would need to calculate the volume to answer the question below it.

How much water fits in the swimming pool?

How long is this pencil?

How much popcorn fits in this bag?

How much room is inside this box?

How tall is this house?
2. Find the volume of each object by figuring out the number of one-inch cubes that make up the whole shape.

\qquad
\qquad cubic in
3. Find the volume of each object by multiplying the length, width, and height.

216 cubic in

$\underline{240}$ cubic ft

84

\qquad cubic in

\qquad cubic in $t+t++t+t+t+t+t+t+t+t+t+t+t+t+t+t+++229$
Jenny Phillips

MATH 4 ®

Review

1. Write the name of each geometric solid.
cone sphere cube
2. Michaela is facing west. She turns around until she is facing east. How many degrees did she rotate?
180°
3. Each shape was rotated clockwise around the red point. How many degrees did each shape rotate?

4. Complete each problem. Use scratch paper if necessary.
$6 \longdiv { 1 , 0 6 8 }$
$4 \longdiv { 2 4 8 }$
$3 \longdiv { 1 , 4 0 4 }$
$2 \longdiv { 4 1 2 }$

5. Use the line graph above to answer the questions.
a) How many customers were there in October? 2.500
b) How many customers were there in March and May together? \qquad
c) How many more customers were there in November than in December? \qquad
d) How many fewer customers were there in January than in July? 500
e) During one month there was a holiday that brought a lot of visitors to town. Looking at the graph, which month would you guess the holiday was in? \qquad September
f) During one month the store closed in order to fix a broken water pipe. Looking at the graph, which month would you guess the store was closed? \qquad

(6) MATH 4

Review

I. Find the volume of each object.

45 cubic in \qquad 48 cubic in

60
\qquad 5 cubic ff \qquad cubic in
3. Add the fractions by creating fractions with common denominators.

$$
\frac{y_{6}^{6}}{y_{8}}+\frac{1}{8}=\frac{7}{8} \quad \frac{4}{15}+\frac{y^{10}}{y_{15}}=\frac{14}{15} \quad \frac{3}{10}+\frac{y^{5}}{y^{10}}=\frac{8}{10} \quad \frac{3}{9}+\frac{y^{3}}{y_{9}}=\frac{6}{9}
$$

4. Reduce each fraction to its simplest form.

$$
\begin{array}{lllllllll}
\frac{20}{30} & \frac{2}{3} & \frac{16}{24} & \frac{2}{3} & \frac{9}{18} & \frac{1}{2} & \frac{14}{35} & \frac{2}{5} & \frac{15}{20}
\end{array}
$$

5. Complete each problem. Use scratch paper if necessary.
$7 \longdiv { 2 , 7 6 5 }$
$3 \longdiv { 1 2 7 }$
$8 \longdiv { 2 3 1 } \quad 4 \longdiv { 2 3 2 }$
6. Complete each conversion.

MATH 4

Lesson Practice

MATH) Mysteries

Use the clues and the number bank below to fill in the correct answers. Then use the numbers above the colored lines to answer the question at the bottom.
I have a 3 in the tenths place. $61 \cdot 37$
I have a 1 in the thousandths place. 5.841
I have a 3 in the hundredths place. $8 \cdot 334$
I have an 8 in the tenths place. 1,8
I have a 1 in the hundredths place. $8 \quad 2.41$
I have an 8 in the thousandths place. $1 \cdot 308$

$$
\begin{array}{llllll}
1.308 & 61.37 & 5.841 & 82.41 & 71.83 & 8.334
\end{array}
$$

How many times on average does a hummingbird beat its wings in one minute?

$$
3,1,71,4
$$

1. Fill in the missing decimal place values.

2. Follow the instructions to write the number below.
a) Write a 7 in the hundredths place.
b) Write a 4 in the ones place.
c) Write a 3 in the thousandths place.
d) Write a 5 in the tenths place.
e) Write a l in the tens place.

f) Write a 2 in the hundreds place.

$$
21-4 \cdot 5
$$

3. Circle every decimal number that has a 4 in the tenths place.
64.32

\qquad $4.841 \quad 0.7$
673.45 \qquad $4.6 \quad 0.244$
4. Circle every decimal number that has a 7 in the hundredths place.

5. Circle every decimal number that has a 2 in the thousandths place.

Review

I. Shade the shapes to represent each mixed number. Then use the shaded shapes to write the improper fraction.

2. Write all the multiples of I 2 between 60 and I 32 . $60,72,84,96,108,120,132$
3. Find the volume of each object.

\qquad cubic in

7. Complete each problem. Use scratch paper if necessary.
$2 \longdiv { 1 , 7 6 4 }$
$9 \longdiv { 5 7 }$
74
$4 \longdiv { 2 9 6 }$

231

Lesson Practice

I. For each circle draw a diameter in blue and a radius in purple. Make each circle look different.
Answers will vary. Examples are shown.

2. Read the clues to color each circle.

Color the circle with a diameter of 10 cm RED.
Color the circle with a radius of 2 cm BLUE.
Color the circle with a diameter of 12 cm YELLOW.
Color the circle with a radius of 4 cm GREEN.
Color the circle with a diameter of 20 cm PURPLE.
Color the circle with a radius of 8 cm ORANGE.

3. For each picture find the measurement of the missing radius or diameter.

Radius $=4$ in
Diameter $=8$ in

Radius $=15$ in
Diameter $=30 \mathrm{in}$

Radius $=3 \mathrm{ft}$
Diameter $=6 \mathrm{ft}$

Radius $=5 \mathrm{~cm}$
Diameter $=10 \mathrm{~cm}$

Radius $=100 \mathrm{~cm}$
Diameter $=200 \mathrm{~cm}$

Radius $=4,000 \mathrm{~mm}$
Diameter $=8,000 \mathrm{~mm}$

相

An elephant never forgets ... its GEOMETRY

- Color the triangles blue. Are the toes equilateral or scalene triangles? equilateral
- Color the quadrilaterals green. What do you call a quadrilateral with one pair of parallel lines?
trapezoid
- Color the octagons purple. What type of angles make up the octagons in the elephant: acute, obtuse, or right? obtuse
- Color the rest of the polygons yellow. What do you call a polygon with 5 sides? pentagon
- The elephant's tail is a triangle made up of three angles. What types of angles are they?
obtuse, acute, and acute (in any order)
- Find the triangle with the star. Is it a right, acute, or obtuse triangle? obtuse

$+++++$

Math 4 Answer Key

Break the Roman numeral code! There are three Roman numerals between each of the columns. Write the value of each Roman numeral according to its color in the box below. Find the sum of the values, and then change the sum to a Roman numeral. Using the sum's Roman numeral and the letter found between each of the columns, complete the riddle below. The first one is done for you.

WHAT DO YOU CALL A ROMAN EMPEROR WHO HAS A COLD? $\sum_{\text {Lxvi }}^{J} \frac{U}{\text { xxxiII }} \frac{L}{\text { xxviII }} \frac{I}{\text { xLI }} \frac{U}{\text { xxxiII }} \frac{S}{\text { Liv }} \frac{S}{\text { Liv }} \frac{N}{\text { xcvi }} \frac{E}{\text { cv }} \frac{E}{c v} \frac{Z}{\text { Lxxxil }} \frac{E}{c v} \frac{R}{\text { Lxxi }}$

a

Lesson Practice

I. Read each decimal number aloud to your parent or teacher.

$$
\begin{aligned}
& \begin{array}{llllllll}
32.5 & 7.86 & 14.247 & 0.2 & 123.14 & 0.54 & 4.7 & 0.674 \\
\text { 2. Circle the correct word form for each decimal number. }
\end{array} \\
&
\end{aligned}
$$

$$
4.05
$$

a) four and five tenths a) seventy-two and nine hundredths b) four and five hundredthss b) seventy-two and nine fenths
c) four and five thousandths c) seventy-two and nine thousandths

$$
13.169
$$

a) thirteen and one six nine thousandths b) thirfeen and one hundred sixty-nine thousandths c) one three and one hundred sixty-nine thousandths
3. Complete the chart.

seven and nine-tenths	$7 \frac{9}{10}$	7.9
fifty-seven and three hundredths	$57 \frac{3}{100}$	57.03
three hundred seven and eleven thousandths	$307 \frac{11}{1,000}$	307.011

4. Write each fraction as a decimal number.

$$
\begin{array}{clclcl}
\frac{6}{10} & 0.6 & \frac{4}{100} & 0.04 & \frac{22}{100} & 0.22 \\
\frac{3}{1.000} & 0.003 & \frac{9}{10} & 0.9 & \frac{4}{10} & 0.4 \\
\frac{43}{100} & 0.43 & \frac{364}{1.000} & 0.364 & \frac{587}{1.000} & 0.587
\end{array}
$$

5. Write each decimal number using digits.
a) four and three tenths 4.3

b) twenty-two and thirty-seven hundredths 22.37
c) six and one hundred eighteen thousandths 6.118
d) eighty-three hundredths 0.83

Review

I. Match the Roman numerals to the numbers.

2. Write the measurement of each diameter.

Diameter $=22 \mathrm{~cm}$ Diameter $=46 \mathrm{ft}$
3. Follow the instructions to write the number.
a) Write a 6 in the hundredths place.
b) Write al in the ones place.
c) Write an 8 in the thousandths place.
d) Write a 3 in the tenths place.
e) Write a 4 in the tens place.
f) Write a 9 in the hundreds place.
$9 \quad 4 \quad 1 \cdot 3 \quad 6 \quad 8$
4. Shade the shapes to represent each mixed number. Then use the shaded shapes to write the improper fraction.

5. Add the fractions by creating fractions with common denominators.
$\frac{X^{4}}{X^{4}}+\frac{4}{8}=\frac{8}{8} \quad \frac{4}{12}+\frac{X_{4}}{\not Z^{12}}=\frac{8}{12} \quad \frac{4}{10}+\frac{X_{2}}{\not Z^{10}}=\frac{6}{10}$
6. Reduce all three answers in Problem 5 above to their simplest forms.

7. Complete the problem using the order of operations. Hint: Please Excuse My Dear Aunt Sally.

$$
27-3 \times 2^{2}+(15-5)=25
$$

8. Complete each problem. Use scratch paper if necessary.
$3 \longdiv { 1 , 8 7 2 }$
$6 \longdiv { 4 8 6 }$
$7 \longdiv { 4 0 6 }$

6	4
$\times 6$	$\times 5$
36	20
5	12
$\times 7$	$\times 4$
35	$\frac{48}{7}$
7	6
$\times 8$	$\times 7$
56	42
12	5
$\times 9$	$\times 6$
108	30
5	8
$\times 3$	$\times 4$
15	32
9	12
$\times 3$	$\times 5$
27	60
3	9
$\times 9$	$\times 7$
27	63
7	4
12	$\times 4$
84	16

MATH 40

Complete each problem using long division on scratch paper.
I. Daisy drove 240 miles in 3 hours. If she drove the same number of miles each hour, how many miles did she drive each hour? 80 miles
2. Marco is trying to fit 618 books equally on 3 bookshelves. How many books will he put on each shelf?

206 books
3. Chelsea flew 2,730 miles in 7 hours. If she flew the same number of miles each hour, how many miles did she fly each hour?

$$
390 \text { miles }
$$

4. Michelle makes the same amount of money each week at her job. After 5 weeks of dog walking, she earned $\$ 530$. How much did she make each week? \$106

5. Darius and Jamal caught 120 trout at the fishing hole. How many fish will each boy get if they split them equally?

60 fish
6. Isabella works at a local pizza restaurant. She made 612 pizzas in the last 6 days. If she made the same number of pizzas each day, how many pizzas did she make each day?

102 pizzas

7. Kim and Juan are baking cookies for a fundraiser. They baked 428 cookies and packaged them in groups of 4 . How many cookie packages do they have?

107 packages
8. Gerald volunteered for 50 hours over the last 5 days. If he volunteered the same number of hours daily, how many hours did he volunteer each day?

10 hours

9. Kojo is helping to build a school for boys and girls who live in the African village of Nzuri. There are 320 students who will be divided evenly into 8 classrooms. How many students will be learning in each classroom?

40 students

- Jenny Phillips

I. Use the distributive property to complete each problem on the soccer field. Use scratch paper if you need more room.
2. Find the perimeter of each playing field below by using the formula $P=2 \times(L+W)$.
A) Ping Pong Table
Length: $9 \mathrm{ft} \quad 28 \mathrm{ft}$
Width: $5 \mathrm{ft} \quad$
B) Olympic Swimming Pool

Length: 50 m
Width: $25 \mathrm{~m} \quad 150 \mathrm{~m}$
C) Volleyball Court

Length: 59 ft
Width: 30 ft
178 ft
D) Bowling Lane

Length: 60 ft
128 ft
Width: 4 ft

E) Horseshoe Pit

Length: 43 in
Width: 31 in
F) Curling Court

Length: 146 ft Width: 14 ft

MATH 4 Q

Lesson Practice

Shalleece and her family are backpacking down the Appalachian Trail. Help calculate different measurements on their trip. Use scratch paper if you need more room.

1. On the first day of their trip, Shalleece and her family were full of energy and hiked 7 miles. How many feet did they hike?

36,960 feet

2. On the second day of their trip, they had to climb a mountain. It was steep and hard, so they only made it 1,125 feet before they had to stop. How many yards did they travel on Day 2?

375 yards

3. Shalleece and her brother stretched out the rope to set up the tent. It was 4 yards long. How many inches long was the rope?

144 inches

4. In camp that night, Shalleece measured their tent. It was 72 inches tall. How many feet tall was their tent?

6 feet

5. On Day 3 they hiked for 685 yards before stopping for a snack. How many feet did they hike?

2,055 feet

6. While they ate their snack, they sat under a tree that was 9 feet tall. How tall was the tree in inches?

108 inches

7. On the last day of their trip, Shalleece and her family hiked for 4 miles. How many feet did they hike?
\qquad

Math $_{\text {Mountain }}^{S_{4}}$

Take a hike through the mountains by completing each problem.

$$
4,000,000
$$

$$
-517,962
$$

$$
3,482,038
$$

$$
7 \times(8+3)=77
$$

$$
20 \times 4,000=80,000
$$

$$
8,000,000
$$

$$
15 \times 300=4,500
$$

$$
\begin{array}{r}
-\quad 251,075 \\
\hline 7,748,925
\end{array}
$$

$$
\begin{array}{rrrr}
15 \times 300=4.500 & 7.748 .925 & \$ 251.35 & \$ 672.48 \\
\frac{\chi^{14}}{\chi^{2} 88}-\frac{7}{28}=\frac{7}{28} & \frac{7}{18}+\frac{\chi^{12}}{\chi^{18}}=\frac{19}{18} & \frac{3}{20}+\frac{X^{4}}{x_{2}}=\frac{7}{20} & +\$ 37.62 \\
\$ 288.97 & \frac{-\$ 83.72}{\$ 588.76} & \frac{-\$ 67.22}{\$ 803.83}
\end{array}
$$

$$
6 \longdiv { 1 , 6 2 0 } \quad 7 \longdiv { 2 , 8 6 3 }
$$

$$
8 \longdiv { 8 5 6 }
$$

$$
4 \times(12+8)=80
$$

$$
10 \times(6+7)=130
$$

$1^{2}=1$	$9^{2}=81$	$3^{2}=9$
$10^{2}=100$	$6^{2}=36$	$12^{2}=14$

$5 \times(12+9)=1058 \times(4+4)=64$

304
$4 \longdiv { 1 , 2 1 6 }$
40

Sometimes it may be necessary to convert between units. When converting from a larger unit to a smaller unit, you multiply. When converting from a smaller unit to a larger unit, you divide.

Convert from meters to centimeters
$3 \mathrm{~m}=\underline{300} \mathrm{~cm}$Choose the correct conversion
$1 \mathrm{~m}=100 \mathrm{~cm}$
(2)

Choose the correct operation.
larger unit \rightarrow smaller unit (\times)
(3)

Multiply the number of meters by the number of centimeters in one meter. $3 \times 100=300$
$3 \mathrm{~m}=300 \mathrm{~cm}$

Convert from meters to kilometers

$8,000 \mathrm{~m}=8 \mathrm{~km}$Choose the correct conversion.
$1 \mathrm{~km}=1,000 \mathrm{~m}$
(2)

Choose the correct operation.
smaller unit \rightarrow larger unit (\div)
(3)

Divide the number of meters by the number of meters in one kilometer. $8,000 \div 1,000=8$$8,000 \mathrm{~m}=8 \mathrm{~km}$

Lesson Practice

I. Complete each conversion below. Use scratch paper if you need more room.
a) $7 \mathrm{~km}=\underline{7,000}$
\qquad m
d) $300 \mathrm{~cm}=3 \mathrm{~m}$
\qquad m g) $90 \mathrm{~mm}=$ \qquad cm
b) $4 \mathrm{~m}=\underline{4,000} \mathrm{~mm}$
e) $12,000 \mathrm{~m}=12 \mathrm{~km}$
h) $600 \mathrm{~cm}=$ \qquad 6 m
c) $14 \mathrm{~m}=1,400$ cm
f) $9,000 \mathrm{~mm}=$ \qquad m i) $7 \mathrm{~cm}=$ \qquad mm
2. Match each measurement on the left with its equivalent conversion on the right.

3. Complete each conversion.

$$
8,000 \mathrm{~mm}=800 \mathrm{~cm}=8 \mathrm{~m}
$$

$$
2 \mathrm{~km}=2,000 \quad \mathrm{~m}=200,000
$$

Math 4 Answer Key
3. Circle the prime numbers.
(13) 7) $4 \quad 15$
(23)
4. Complete each conversion.
5. Write the measurements of the radius and diameter of each circle.

radius $=19 \mathrm{~m}$ diameter $=38 \mathrm{~m}$
6. Find the volume of each solid below. Write your answer in cubic units.

7. Complete each problem.
$6 \longdiv { 1 , 8 4 8 }$
140
$4 \longdiv { 5 6 0 }$
$3 \longdiv { 1 , 7 3 4 }$
57
$7 \longdiv { 3 9 9 }$
8. Reduce each fraction to its simplest form.

$255 \mathrm{ft}=85 \mathrm{yd}$
$60 \mathrm{in}=5 \mathrm{ft}$

12 inches $=1$ foot	3 feet $=1$ yard
36 inches $=1$ yard	5,280 feet $=1$ mile

258

- Jony Phillips
- MATH 4

MATH 4 ®

叫

- Jenny Phillips
(1) MATH 4

Lesson Practice

I. Draw a blue arrow to show the whole number from the division problem's quotient (answer) in the mixed number. Draw a green arrow to show that the remainder becomes the numerator of the fraction part. Draw an orange arrow to show that the divisor becomes the denominator of the fraction part.

2. Match each improper fraction to the correct division problem.

3. Use division to convert the improper fractions to mixed numbers.

2. Erika got the following math problems wrong on her math homework. Can you find the mistake in each problem? Once you do, complete the problem correctly.

$$
\begin{array}{r}
23 \\
\times 12 \\
\hline 46 \\
+23 \\
\hline 69 \\
\hline
\end{array}
$$

$$
\begin{array}{rrr|}
\hline \hline 15 \\
\times 12 \\
\hline 32 \\
+150 \\
\hline 182 & \times 12 & 44 \\
\hline 30 & \times 11 \\
\hline 44 \\
\hline 180 & \frac{+440}{488}
\end{array}
$$

Math 4 Answer Key

$$
5 \longdiv { 2 , 5 7 8 } 7 \longdiv { 4 8 2 } 3 \longdiv { 2 7 4 } \quad \frac { \text { pl} _ { 1 2 } } { \mathscr { p } _ { 2 0 } } + \frac { 2 } { 2 0 } = \frac { 1 4 } { 2 0 } \frac { 7 } { 1 0 } \quad \frac { 1 2 } { 1 8 } - \frac { \chi _ { 6 } } { \beta _ { 1 } } = \frac { 6 } { 1 8 } \quad \frac { 1 } { 3 } \quad \frac { 5 } { 1 2 } + \frac { R _ { 6 } } { \wedge _ { 1 2 } } = \frac { 1 1 } { 1 2 } \frac { 1 1 } { 1 2 }
$$

2 24

MATH 4

Sometimes when you multiply two two-digit numbers, regrouping is required. For example:

Multiply: 46 $3 \times 6=18$ $\times 23$ Regroup: Write 8 in the ones place and carry the 1. 8	
$\begin{aligned} & \text { Multiply: } \\ & 3 \times 4=12 \\ & \text { Add: } \\ & 12+1=13 \end{aligned}$	46
	$\times 23$
	138

CREATE YOUR OWN Lason Preate

Fill in the blanks for each question to create your own lesson practice questions. Then complete each problem to find the answer. Use scratch paper for more room.

Math 4 Answer Key

Review

I. Continue each pattern.
$79,75,71,67, \underline{63}, \underline{59}, \underline{55}, \underline{51} \quad 2,14,26, \underline{38}, \underline{50}, \underline{62}, \underline{74}, \underline{86} \quad 50,200,350, \underline{500}, \underline{650}, \underline{800}, \underline{950}$
2. Complete each conversion.
$19 \mathrm{yd}=57 \mathrm{ft} \quad 65 \mathrm{~km}=\underline{65,000} \mathrm{~m} \quad 8 \mathrm{mi}=\underline{42,240 \mathrm{ft} \quad 6 \mathrm{ft}=\underline{72} \mathrm{in} \quad 10 \mathrm{~cm}=\underline{100} \mathrm{~mm} \mathrm{~m} .}$
3. Label each quadrilateral or solid with its most specific name.

\qquad
 parallelogram rectangle
6. Write each number with Roman numerals.

5. Write each perfect square.
$5^{2}=25 \quad 2^{2}=4 \quad 8^{2}=64 \quad 4^{2}=16 \quad 9^{2}=81$
7. Complete each problem.
$13 \times 200=2,600 \quad 30 \times 8,000=240,000$ d

6	9	8	3	7	7	12	9	9	4	6	12	12	8	6
$\times 7$	$\times 7$	+12	+3	$\times 3$	$\times 7$	$\begin{array}{r}12 \\ \times \quad 9 \\ \hline 108\end{array}$	$\times 8$	$\times 4$	$\times 5$	$\times 3$	+ 3	+ 6	$\times 3$	$\times 4$
42	63	96	9	21	49	108	72	36	20	18	36	72	24	24

3. Meri has $\$ 37.95$ to spend at the farmers market. She buys a bag of peaches for $\$ 1.52$ and a loaf of fresh bread for $\$ 7.96$. How much money does she have left? \$18.47
4. José is selling homemade candles at the farmers market. In the morning he made $\$ 88.20$, and in the afternoon he made $\$ 38.64$. How much more money does he need to make to have $\$ 150$? \$23.16
5. Jocelyn is in charge of weighing fruit at her family's stand. The first batch of tomatoes weighed 25.034 lb , the second batch weighed 8.39 lb , and the third batch weighed 18.7 lb . How much did the tomatoes weigh in total?
52.124 lbs
I. Write the measurements of the radius and diameter of each circle.

6. Write each decimal number using digits.
a) thirty-two and one hundred twenty-five thousandths
b) eighty-seven hundredths
a) three hundred nine and four tenths
radius $=11 \mathrm{~mm}$
diameter $=$
d

6. Find the perimeter and area. Hint: Divide this shape
radius $=52 \mathrm{~m}$
diameter $=104 \mathrm{~m}$

7. How many inches are in a foot? 12 inches
8. How many feet are in a yard? 3 feet
9. How many inches are in a yard? 36 inches

IO. How many feet are in a mile? 5,280 feet
II. How many millimeters are in a centimeter?
12. How many centimeters are in a meter? 100 centimeters
13. How many millimeters are in a meter? 1,000 millimeters
14. How many meters are in a kilometer? 1,000 meters
?

$$
84,73,62,51, \underline{40}, \underline{29}, \underline{18} \text { Rule: subtract II }
$$

$52,55,58,61, \underline{64}, \underline{67,} \underline{70}$ Rule: add 3
5. Complete each problem. Use scratch paper if needed.
$\begin{array}{r}1,431 R 1 \\ 4 \longdiv { 5 , 7 2 5 } \\ 7 \longdiv { 1 5 8 }\end{array} \begin{array}{r}22 R 4 \\ \times 23 \\ \hline 621\end{array} \begin{array}{r}32 \\ \hline 1,891\end{array} \frac{61}{800}$

280

Lesson Practice

I. For each geometric figure below, circle ALL correct names.

2. Use the directions below to color the design to the right.
a) Color triangle HLA pink.
b) Color triangle BCM purple.
c) Color triangle DNE blue.
d) Color triangle OGF green.

e) Trace $\overrightarrow{J K}$ and $\overrightarrow{Y Z}$ in yellow.
f) Trace $\overrightarrow{Q P}$ and $\overrightarrow{R S}$ in red.
g) Color octagon ABCDEFGH orange.
h) Color the rest of the shapes in the
design any color you want.
3. In the design above, triangle $D E N$ is made up of line segments $\overline{D E}, \overline{E N}$, and $\overline{N D}$. Write the names of the three line segments that make up triangle ALH.
or $\overline{A L} \quad \overline{L H} \quad$ or $\overline{H L} \quad$ or $\overline{A H}$

OJenny Phillips

MATH 4 ®

DOT.TO•DOT REVIEW

Complete each problem below. Then use the answers to complete the dot-to-dot picture on the next page. Start at the red number I. Draw a line to the answer to Problem 2, and then draw a line to the answer to Problem 3. The numbers in red have been done for you; simply find that number on the dot-to-dot.

	$\text { 2. } 400 \times 20=$	3. $\begin{array}{r} 12 \times 300= \\ 3,600 \end{array}$	$\text { 4. } 60 \times 50=$	5. 5	
6. IV - 4	7. XXVII - 27	8. $\mathrm{cx}-110$	9. LI - 51	IO. 10	
$\begin{array}{\|l\|} \hline \text { II. } \\ \\ \hline \end{array} \frac{127}{254}$	12. $4 \longdiv { 1 8 3 R 3 }$	I3. $5 \longdiv { 7 1 }$	I4. $8 \longdiv { 1 6 9 } { } ^ { 2 1 } \mathrm { RI }$	15. 15	
16. $6 \times 4=24$	17. $8 \times 7=56$	18. $6 \times 9=54$	19. $5 \times 12=60$	20. 20	
$\text { 21. } \frac{1}{3}+\frac{4}{21}=\frac{11}{21}$	22. $\frac{7}{8}-\frac{1}{2}=\frac{3}{8}$	23. $\frac{9}{20}+\frac{1}{5}=\frac{13}{20}$	24. $\frac{4}{6}-\frac{7}{24}=\frac{9}{24}$	25. 25	
26. $31.745-9.6=$ 22.145	$\text { 27. } 4.57-0.004=$	$\begin{gathered} 28.61 .9-4.78= \\ 57.12 \end{gathered}=$	$\begin{gathered} \text { 29. } 8.32-1.5= \\ 6.82 \end{gathered}$	30. 30	
31. $3 \times 7=21$	32. $9 \times 7=63$	33. $12 \times 4=48$	$\text { 34. } 6 \times 6=36$	35. 35	
36. $34 \mathrm{yd}=102 \mathrm{ft}$	37. $6 \mathrm{ft}=72 \mathrm{in}$	38. $30 \mathrm{~mm}=3 \mathrm{~cm}$	39. $600 \mathrm{~cm}=6 \mathrm{~m}$	40. 40	
41. $23 \times 14=322$	42. $45 \times 19=855$	43. $27,23,19,15, . \\|$	$\text { 44. } 7,14,21,28$	45. 45	
$\begin{aligned} & \text { 46. } \text { Radius }=13 \mathrm{~cm} \\ & \text { Diameter }=26 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & \text { 48. } \text { Radius }=70 \text { in } \\ & \text { Diameter }=140 \text { in } \end{aligned}$		$50 .$ 50	

Math 4 Answer Key

Math 4 Answer Key

\% VOLUME (LESSON7) \%

Find the volume of each solid. Remember to write cubic units in your answer.

Volume $=$
Volume $=$

\square Addition al Practice

Find the volume of each solid. Remember to write cubic units in your answer.

Volume $=$

MIXED NUMBERS \& IMPROPER FRACTIONS (Lessons 72 \& 83)

Convert each improper fraction to a mixed number.

2 Additional Proctice

Match each mixed number with the equivalent improper fraction.

| $8 \frac{1}{6}$ |
| :---: | :---: |
| $3 \frac{2}{5}$ |
| $1 \frac{5}{6}$ |
| $4 \frac{3}{5}$ |
| $2 \frac{2}{6}$ |

Jenny Phillips

風

MATH 4

CONVERSIONS (LESSONS 79 \& 80) E

Complete each conversion.

\square Additional Practice

How many inches are in a foot?
12 inches
How many feet are in a yard?
3 feet
How many feet are in a mile?
5,280 feet
How many millimeters are in a centimeter? 10 millimeters
How many centimeters are in a meter? 100 centimeters
How many meters are in a kilometer?
1,000 meters

$$
8 \mathrm{~m}=800 \mathrm{~cm}=8,000 \mathrm{~mm}
$$

$$
1 \mathrm{mi}=\underline{1,760} \mathrm{yd}=\underline{5,280}
$$

ADD $\&$ SUBTRACT
FRACTIONS (LESSON 66)
Add or subtract the fractions. Then write each answer in simplest form in the box.

$\sum \quad$ Additional Practice

Add or subtract the fractions. Reduce each answer to its simplest form.

MATH 4 ®

\% DECIMAL NUMBERS E

Write each decimal number using digits.
a) ten and thirty-three hundredths
10.33
b) five tenths
0.5

Rewrite each problem vertically and complete it.

$287.15-6.724$	$0.75+57.8$
280.426	58.55

Rewrite each problem vertically and complete it.

$1.1+0.374$	$23.23-2.23$
1.474	21

Write each decimal number using digits.
a) one and seventy-two hundredths $\quad 1.72$
b) eight thousandths
0.008

MATH 4 ®

2. What number is the arrow pointing to? -8

3. What number is the arrow pointing to? -10

Use the number line below to answer the following questions.

4. What number is six less than zero? - 6
5. What number is eight more than zero? 8
6. What number is ten less than five? - 5

Guess WHO?

Each child created a pattern. Use the clues and write the name of each child next to the pattern he or she created. Then continue the pattern by filling in the blanks.

Darius' pattern increases by 5 s .
Seth's pattern decreases by 2 s .
Nala's pattern increases by 3 s .
Rita's pattern increases by 2 s .
Eli's pattern decreases by 5 s .
Bella's pattern decreases by 3s.

Name: $\frac{\text { Eli }}{}$ 15, 10,5,0, -5 $, \underline{-10}, \underline{-15}$	
Name: Nala	$-12,-9,-6,-3,0,3$

Name: Seth 2, 0, -2, -4, , -6, $, \underline{-8}, \underline{-10}$
Name: Bella 6,3,0, -3, -6, -9, -12

Name: Darius $-20,-15,-10,-5,0,5$

Name: Rita $-6,-4,-2, \underline{0}, 2, \underline{4}$

MATH 4

Review

I. Complete the problems, and then round the answers to the nearest million.

$$
\begin{array}{r}
200,000,000 \\
-\quad 25,274,902 \\
\hline 174,725,098 \\
\hline 175,000,000
\end{array} \quad \begin{array}{r}
278,660,459 \\
\hline 627,561,906 \\
628,000,000
\end{array}
$$

2. You started your math lesson at 7:42 AM. It took you I hour and 7 minutes. At what time did you finish your math lesson?
8:49 AM
3. Put these numbers in order from least to greatest.

874.423	847.423	847.127	874,234

$847,127 \quad 847,423 \quad 874,234 \quad 874,423$
4. Circle all the fractions that are equivalent to $\frac{1}{2}$.

$$
\left(\frac{6}{12}\right) \frac{2}{5} \quad \frac{7}{7}\left(\frac{5}{10}\right)\left(\frac{10}{20}\right) \frac{3}{8} \quad\left(\frac{8}{16}\right) \frac{4}{12} \quad \frac{6}{7}
$$

5. Use the clues to determine the mystery number.

$$
\begin{array}{llllllll}
15 & 14 & 12 & 62 & 39 & 14 & >1 & 26 \\
>6
\end{array}
$$

I am not the number to the left of $I 2$. I am not the number to the right of 62. I am a two-digit number. I am an even number. I am greater than 16. Added together, my digits equal 8. Rounded to the nearest ten, I equal 30 . Which number am I?
6. Identify each type of angle.

Right
Acute

$\underset{0 \text { Jeny Phillps }}{t++7}$
Math 4 Answer Key

※

Lesson Practice

I. Compare each set of decimal numbers and write a < or > symbol.

2. Below are the results from a swim meet. Put all the swimmers' times in order from least to greatest. Then write the name of each swimmer next to the ribbon he or she earned. Hint: The swimmer who

3. Start in the orange square and travel to the purple square. You can only move to a smaller number. You can only travel vertically or horizontally, not diagonally.

3.045	3.054	2.18	2.245	2.049
3.025	3.034	2.157	2.156	2.047
2.452	2.452	2.404	2.41	2.03
2.753	2.471	2.5	2.04	2.001
2.04	1.45	1.333	1.321	1.5
2.001	1.54	1.31	1.301	1.51
0.845	0.98	0.981	1.054	1.055
0.832	0.981	0.984	1.06	1.12
0.65	0.56	0.43	0.45	0.95
0.678	0.566	0.21	0.2	0.01

\&

MATH 4 ©

Review

I. Convert each improper fraction to a mixed number.

$$
\frac{13}{4} 3 \frac{1}{4} \quad \frac{9}{5} 1 \frac{4}{5} \quad \frac{22}{3} 7 \frac{1}{3}
$$

2. Identify the rules and continue the patterns.

67,60,53, 46, 39, 32, 25 Rule: subtract 7
25, 29, 33, 37, 41, 45, 49 Rule: add 4
3. Circle every shape that can be classified as a trapezoid (a quadrilateral with one set of parallel sides).
$\square \boxtimes>$

\square
4. Write the place value of each underlined digit.
\qquad
0.274
\qquad
3.417 tenths
$3 \longdiv { 1 , 7 2 2 }$
$8 \longdiv { 2 0 9 R 2 }$
$7 \longdiv { 2 , 4 8 7 }$
१. Complete each problem.

$$
\begin{array}{r}
18 \\
\times 24 \\
\hline 432
\end{array} \begin{array}{r}
36 \\
\times 17 \\
\hline 612
\end{array} \begin{array}{r}
44 \\
\times 22 \\
\hline 968
\end{array}
$$

IO. Write each number with Roman numerals.
6. Add the fractions. Then write each answer in its simplest form in the box.
$\frac{3}{4}+\frac{2}{12}=\frac{11}{12}$

$$
\frac{3}{10}+\frac{1}{2}=\frac{4}{5}
$$

$$
\frac{2}{8}+\frac{4}{16}=\frac{1}{2}
$$

7. Write the measurements of the radius and diameter of each circle.

8. Complete each conversion.

$$
8 \mathrm{ft}=96 \mathrm{in}
$$

$27 \mathrm{~mm}=2.7 \mathrm{~cm}$

	I I	5	V	10	X	50	L	
4	5	4	5	6	7	7	3	8
$\times 9$	$\frac{\times 12}{60}$	$\frac{\times 3}{12}$	$\frac{\times 8}{40}$	$\frac{\times 12}{72}$	$\frac{\times 8}{56}$	$\frac{\times 12}{84}$	$\frac{\times 9}{27}$	$\frac{\times 6}{48}$
36								

Below are two tables showing the lowest temperatures recorded each year from 2010 to 2020 in the cities of Indianapolis, Indiana, and St. Louis, Missouri. Use the tables to compare temperatures. Write the numbers in the boxes provided according to the data shown on each table. Then compare the numbers by writing $a<,>$, or $=$ symbol in each circle between them.

Lowest Temperatures for
Indianapolis, Indiana
Year ${ }^{\circ} \mathrm{F}$ Year ${ }^{\circ} \mathrm{F}$ 2010 $1{ }^{\circ} \mathrm{F}$ 2016 $-1{ }^{\circ} \mathrm{F}$ 2011 $-3^{\circ} \mathrm{F}$ 2017 $-3^{\circ} \mathrm{F}$ 2012 $11{ }^{\circ} \mathrm{F}$ 2018 $-12^{\circ} \mathrm{F}$ 2013 $2^{\circ} \mathrm{F}$ 2019 $-10^{\circ} \mathrm{F}$ 2014 $-15^{\circ} \mathrm{F}$ 2020 $2^{\circ} \mathrm{F}$ 2015 $-7^{\circ} \mathrm{F}$

THE ST. LOUIS TIMES

Lowest Temperatures for St. Louis, Missouri

Compare the temperatures in Indianapolis, Indiana, for each year listed:

Compare the temperatures in St. Louis, Missouri, for each year listed:

2010 2011	$2012 \quad 2013$	$2014 \quad 2015$
$0^{\circ}=0^{\circ}$	$13^{\circ}>7{ }^{\circ}$	$-8^{\circ}<$
$2016 \quad 2017$	$2018 \quad 2019$	20192020
$3>2$	$-6^{\circ}=-6^{\circ}$	$-6^{\circ}<5^{\circ}$

Compare the temperatures in St. Louis and Indianapolis for each year listed:
2010
Indianapolis St. Louis Indianapolis St. Louis Indianapolis St. Louis

0 Jenny Phillips

() MATH 4

Review

I. Continue each pattern.
$20,15,10,5, \underline{0},-\underline{-5}, \underline{-10}, \underline{-15}$ $-27,-20,-13,-6, \ldots, 1, \underline{15}, \underline{2}$
$12,9,6,3,0,-3,-6,-9,-12$
$-2,-4,-6,-8,-10,-12,-14,-16$
2. Circle each decimal number that rounds down to the nearest whole number. Put a box around each decimal number that rounds up to the nearest whole number.

3. Find the volume of each solid.

Volume $=736$ cubic in

bft
lume

Use the number line below to answer the following questions.

4. What number is 7 less than 0 ? -7
7. What number is 3 less than -2 ? -5
5. What number is 2 more than 0 ? 2
8. What number is 4 more than -5 ? - 1
6. What number is 8 less than 5 ? -3
10. Arrange these decimal numbers from least to greatest.

12. Complete each problem. Use scratch paper for more room.

$$
\begin{aligned}
& \frac{811 R 3}{108 R 2} \\
& 4 \longdiv { 3 , 2 4 7 }
\end{aligned} \begin{array}{rrr}
45 & 27 & 72 \\
\times 12 & \times 56 \\
\hline 540 & \frac{11}{1,512} & \\
& & 992
\end{array}
$$

$6 \longdiv { 3 6 } \quad 7 \longdiv { 2 1 }$
$6 \longdiv { 1 8 }$
$2 \longdiv { 4 8 } \quad 9 \longdiv { 2 7 }$
$6 \longdiv { 4 8 }$
$4 \longdiv { 3 }$
$1 2 \longdiv { 1 2 0 }$
$7 \longdiv { 2 8 }$
$4 \longdiv { 3 6 }$
$8 \longdiv { 2 4 } \quad 9 \longdiv { 5 4 }$

MATH 4

Review

I. Rewrite each problem vertically on scratch paper and complete it.
$207.17+32.761=239.931$
$0.791+542.27=543.061$
$1.67+987.016=988.686$
2. Write your answers from the problems above in order from least to greatest.
239.931, 543.061, 988.686
3. Complete each problem.
$6 \longdiv { 1 , 8 4 7 }$
$5 \longdiv { 1 6 9 R 2 }$
$4 \longdiv { 3 8 7 }$
4. Each orange shape below has been rotated.

Label each rotation with the direction and degree of the turn.

clockwise 90°
counterclockwise 270°

Use the number line below to answer the following questions.

5. What number is 14 less than 0 ? -14 . What number is 6 less than -5 ? -11
6. What number is 4 more than 0 ? 4
9. What number is 10 more than -15 ? -5
7. What number is 15 less than 5 ? -10
10. What number is 12 less than 5 ? - 7
II. Subtract the fractions. Then write each answer in its simplest form in the box.
$\frac{13}{16}-\frac{2}{4}=\frac{5}{16} \quad \frac{16}{21}-\frac{1}{3}=\frac{3}{7} \quad \frac{14}{15}-\frac{2}{3}=\frac{4}{15}$
12. Write three ways to name this line.

13. Write three ways to name this angle.
14. Write the name of each geometric solid.

| 8 | 7 | 7 | 9 | 5 | 6 | 12 | 8 | 3 | 8 | 7 | 12 | 8 | 7 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\times 4$ | | | | | | | | | | | | | | |
| 32 | $\times 9$ | $\frac{9}{28}$ | $\frac{4}{27}$ | $\frac{\times 5}{25}$ | $\frac{\times 8}{48}$ | $\frac{\times 6}{72}$ | $\frac{\times 8}{64}$ | $\frac{\times 4}{12}$ | $\frac{\times 5}{40}$ | $\frac{\times 6}{42}$ | $\frac{\times 7}{84}$ | $\frac{\times 7}{56}$ | $\times 7$ | $\times 8$ |
| 99 | | | | | | | | | | | | | | |

Q MATH 4

MATH 4
I. Complete each problem.

Review

$$
\begin{aligned}
& 3 \frac{2}{6}+4 \frac{1}{2}=7 \frac{5}{6} \quad 1 \frac{1}{4}+5 \frac{4}{12}=6 \frac{7}{12} \\
& 189 \quad 284 \quad 540 \quad 831 \\
& \frac{\times 34}{6,426} \quad \frac{\times 11}{3,124} \quad \times 2513 \times 54
\end{aligned}
$$

4. Follow the instructions to write the number below.
5. Round each decimal number to the nearest whole number.

132.4	132	5.5	6	241.9	242
36.8	37	9.1	9	58.2	58
97.2	97	12.7	13	63.6	64

3. Circle every fraction below that is equivalent to $\frac{1}{4}$.
Hint: Find the fractions that simplify to one-fourth.

a) Write a 5 in the hundredths place.	f) Write a 2 in the tens place.
b) Write a I in the ten thousands place.	g) Write a 7 in the millions place.
c) Write a 0 in the thousands place.	h) Write a 4 in the ones place.
d) Write a 3 in the tenths place.	i) Write an 8 in the hundreds place.
e) Write a 9 in the hundred thousands place.	

5. Label each geometric transformation.
($\frac{3}{12}$ ($\frac{5}{20} \frac{3}{8}\left(\frac{2}{8}\right)\left(\frac{8}{32}\right) \frac{5}{16}$
$\left.\frac{4}{10} \quad \frac{7}{28}\right) \frac{3}{18} \quad \frac{2}{6}\left(\frac{4}{16}\right)\left(\frac{10}{40}\right)$

6. Lacey baked 6 dozen cookies. She gave 16 cookies to her next-door neighbors who just had a new baby. She gave 6 cookies to a widow at her church. And she gave half of the remaining cookies to her dad to take to work. How many cookies does she have left?
7. Phillip picked 4 dozen apples from the apple orchard. He used $I 3$ apples to make pies and 22 apples to make applesauce. How many apples does he have left?

13 apples

Lesson Practice I. For each set of blocks, round the decimal number on the yellow block to the nearest whole number and write it on the blue block.
 Lesson Practice I. For each set of blocks, round the decimal number on the yellow block to the nearest whole number and write it on the blue block.
 Lesson Practice I. For each set of blocks, round the decimal number on the yellow block to the nearest whole number and write it on the blue block. Then round it to the nearest tenth and write it on the red block.

Below are four decimal numbers. Round each decimal number to the nearest tenth and to the nearest whole number and write them in the spaces provided.

If you added each column of numbers, which one would have the greatest sum? Circle the column you choose, and then add each column to see if you are correct.

Which column had the greatest sum? Were you correct?
The third column had the greatest sum. Answers to the second question will vary

MATH 4 ®

MATH 4 ®

Review

Caitlyn conducted a survey to determine people's favorite vacations. Use her graph to the right to answer the following questions.
I. What was the most popular vacation chosen? Beach
2. What was the least popular vacation chosen?

River
3. How many people chose the forest as their favorite vacation spot? 65
4. How many more people chose the beach than the park?

$$
40
$$

5. How many people chose either the mountain or the city?

Favorite Vacations

6. How many fewer people chose the river than the forest?

55
7. How many people chose the mountain as their favorite vacation spot?

55
8. How many total people did Caitlyn interview for her survey?

270
१. If Caitlyn interviewed you for her survey, which place would you choose?

Answers will vary.

Read with your parent or teacher

It's time to review Multiplication Set B using the Multiplication Mastery Chart on page 395 with your parent or teacher.

Parent/Teacher: Quiz your child on Set B facts and indicate which facts your child has mastered in the "Reviewed" column on page 395. Practice any missed facts.
$5 \longdiv { 1 5 }$
$8 \longdiv { 5 0 } \quad 9 \longdiv { 7 } \quad 7 \longdiv { 5 } \quad \frac { 4 } { 3 5 } \quad 5 \longdiv { 2 0 }$
$8 \longdiv { 4 8 }$
$8 \longdiv { 3 2 }$
$3 \longdiv { 2 1 } \quad 7 \longdiv { 6 }$
$\begin{array}{rrr}\frac{8}{9} & \begin{array}{r}9 \\ 92\end{array} & 1 2 \longdiv { 9 6 }\end{array}$

MEEA MONKEY

Lesson Practice

MATH PATH

Simplify each mixed number, and then convert it to a decimal number. Write your answers in the white boxes. The first has been done for you. Then find your answers in order to help the monkey navigate the maze. Use a white crayon to trace your path.

\sum Review
I. Complete each problem.
$8 \frac{12}{15}-5 \frac{2}{5}=3 \frac{6}{15} \quad 4 \frac{1}{2}+3 \frac{1}{4}=7 \frac{3}{4}$

274	841	500	89
$\times 32$	$\times 14$	$\times 24$	$\times 42$
8,768	11,774	12,000	3,738

2. Round each decimal number to the nearest tenth.
$47.28 \quad 47.3$
8.328 .3
2.87 \square
$\begin{array}{ll}7.19 & 7.2\end{array}$
241.59
241.6
$156.43 \quad 156.4$
3. Draw shapes or symbols in the boxes to divide each number into equal groups. Then answer the questions.

What is $\frac{1}{4}$ of 12 ? What is $\frac{1}{3}$ of 12 ? What is $\frac{4}{6}$ of 12 ?

5. Find the volume of each solid.

Volume $=54$ cubic inches \quad Volume $=64$ cubic feet
6. Grace is a ballet dancer. She is facing north and spins in a circle on her toes until she is facing south. How many degrees was her spin?
180°

$9,7,5,3, \underline{1}, \underline{-1}, \underline{-3}$

See the ues

四

MATH 4 ®

 $t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t++t$
OU 229
-9 MATH 4

I. Complete each problem using the order of operations. Use scratch paper if you need more room.

4. Simplify each fraction or mixed number, and then write it as a decimal number.
$7 \frac{5}{20}$

7.25
$\frac{11}{22}$
$\frac{1}{2}$
$0.5 \quad 3 \frac{6}{8}$

3.75
$1 \frac{2}{8}$
$1 \frac{1}{4}$
1.25

(W

MATH 4 ©

Math 4 Answer Key

Review
I. Arrange these decimal numbers from greatest to least. Then round each number to the nearest tenth.

	Greatest	Rounded
874.56	875.64	875.6
875.46	875.46	875.5
875.64	874.65	874.7
874.65	874.56	874.6

2. Add or subtract the mixed numbers. Then write the answers in simplest form in the gray boxes.

$$
\frac{8 \frac{3}{5}-5 \frac{1}{10}=3 \frac{5}{10} \quad 3 \frac{2}{3}+3 \frac{1}{12}=6 \frac{9}{12}}{3 \frac{1}{2}}
$$

3. Complete each problem.

$$
5 0 \longdiv { 5 , 6 8 1 } \quad 1 0 \longdiv { 3 7 R ^ { 3 } } \quad \frac { 2 0 \longdiv { 4 3 7 } } { \frac { 2 1 R 1 7 } { 3 7 4 } }
$$

274	341	574	54
$\times 61$	$\times 24$	$\underline{\times 86}$	$\times 54$
16,714	8,184	49,364	2,916

4. Complete each conversion.

$60 \mathrm{in}=$5 ft	$800 \mathrm{~cm}=\underline{8} \mathrm{~m}$	
$3 \mathrm{mi}=15,840 \mathrm{ft}$	$2,000 \mathrm{~m}=2$	km
$8 \mathrm{yd}=288 \mathrm{in}$	$5,000 \mathrm{~mm}=5 \quad \mathrm{~m}$	

5. Simplify each mixed number. Then write it as a decimal number.
$2 \frac{9}{18}$

\square

$$
4 \frac{15}{20}
$$

$$
4 \frac{3}{4}
$$

4.75
6. Circle the fractions that have BOTH a numerator and a denominator that are prime numbers.

$$
\left(\frac{3}{5}\right) \frac{12}{20} \quad \frac{2}{8} \quad\left(\frac{7}{11}\right) \frac{8}{15} \quad \frac{8}{20} \quad\left(\frac{13}{19}\right)
$$

7. List all the factors of 24 .
$1,2,3,4,6,8,12,24$

${ }^{\text {®5 }}$

- Jenny Phillips

Lesson Practice

I. Circle the correct words to make both statements true.
\triangle When converting from GRAMS to KILOGRAMS you MULTIPLY /DIVIDE by moving the decimal point three places to the LEFT. RIGHT. \triangle When converting from KILOGRAMS to GRAMS youMULTIPLY DIVIDE by moving the decimal point three places to the LEFT RIGHT.
2. Fill in the blanks in the chart below to complete each conversion.

How many grams are in 7 kilograms? $\begin{aligned} & 7 \times 1,000=\underline{7}, 000 \\ & 7.000 \\ & 7 \text { kilograms }=\underbrace{7,000}_{7,000 \text { grams }} \end{aligned}$	How many kilograms are in 3,000 grams? $\begin{gathered} 3,000 \div 1,000=3 \\ 3000 \end{gathered}$ 3,000 grams $=$ \qquad kilograms
How many grams are in 7.73 kilograms? $7.73 \times 1,000=7.730$ 7.73 kilograms $=$ \qquad grams	How many kilograms are in 2,700 grams? $\begin{gathered} 2,700 \div 1,000=\underline{2.7} \\ 2700 \end{gathered}$ 2,700 grams $=2.7$ kilograms
How many grams are in 24 kilograms? $\begin{aligned} & 24 \times 1,000=24,000 \\ & 24 \text { kilograms }=24,000 \text { grams } \end{aligned}$	How many kilograms are in 38,000 grams? $\begin{aligned} & \underline{38,000} \div 1,000=\underline{38} \\ & 38,000 \text { grams }=38 \text { kilograms } \end{aligned}$
How many grams are in 4.265 kilograms? $\begin{aligned} & -4.265 \times 1,000=\underline{4,265} \\ & 4.265 \text { kilograms }=\underline{4,265 \mathrm{grams}} \end{aligned}$	How many kilograms are in 61,000 grams? $\begin{aligned} & \underline{61,000} \div 1,000=\underline{61} \\ & 61,000 \text { grams }=\underline{61} \text { kilograms } \end{aligned}$

3. Roll a pair of dice, add the numbers on the dice, and write the sum you rolled in the first blank box. Then

TREASURE
Are you ready to go on a treasure hunt? Use the ordered pairs listed to find the path to the treasure chest. As you find each point, write the letter for that ordered pair in the box at the bottom of the next page. Connect the points in order as you travel across the map.

Man HUNT

Math 4 Answer Key

Review

. Plot each of these points on the coordinate plane below. Remember, the first number in each ordered pair is found using the horizontal x-axis, and the second number is found using the vertical y-axis. Label each point with the correct letter.

2. Multiply or divide each decimal number by moving the decimal point.
$1.49 \times 10=14.9$
$547.3 \div 1,000=0.5473$
$37.5 \times 100=3,750$
$2.478 .1 \div 100=24.781$
$2.568 \times 1,000=2,568$
$52.4 \div 10=5.24$
3. Complete each conversion.

$5 \mathrm{lb}=80 \quad$ oz
$10 \mathrm{lb}=160 \mathrm{oz}$
4. Complete each problem.

5. Simplify each fraction and write it as a decimal number.

$$
\begin{array}{llllll}
\frac{3}{12} & \frac{1}{4} & 0.25 & \frac{4}{8} & \frac{1}{2} & 0.5
\end{array}
$$

6. You finished your bike ride at $4: 45$ PM. The bike ride lasted 2 hours and 20 minutes. At what time did you start your bike ride? 2:25 PM
7. Circle all the quadrilaterals below.

8. Circle the pentagon. Put a box around the hexagon. Underline the oval.

$14,000 \mathrm{lb}=\frac{7}{\mathrm{ln}} \mathrm{tn}$
$3,500 \mathrm{~g}=3.5 \mathrm{~kg}$

344

Матн 4 ©

(t) MATH 4

Review

1. Multiply each decimal number by moving the decimal point.

$$
\begin{gathered}
21.7 \times 10=217 \\
4.678 \times 100=467.8
\end{gathered}
$$

$$
57.314 \times 1,000=57,314
$$

2. Simplify the fractions. Then write them as decimal numbers.

$$
\begin{array}{llllll}
\frac{6}{8} & \frac{3}{4} & 0.75 & \frac{4}{16} & \frac{1}{4} & 0.25
\end{array}
$$

3. Round each decimal number to the nearest tenth.

4. Add or subtract the mixed numbers and fraction. Then write the answers in simplest form in the gray boxes.

$$
\begin{array}{ll}
9 \frac{16}{20}-4 \frac{1}{5}=5 \frac{12}{20} & 5 \frac{3}{5} \tag{3}\\
3 \frac{1}{3}+\frac{4}{12}=3 \frac{8}{12} & 3 \frac{2}{3} \\
2 \frac{4}{14}+2 \frac{4}{7}=4 \frac{12}{14} & 4 \frac{6}{7}
\end{array}
$$

It's time to review Multiplication Set C using the Multiplication Mastery Chart on page 395 with your parent or teacher.

Parent/Teacher: Quiz your child on Set C facts and indicate which facts your child has mastered in the "Reviewed" column on page 395 . Practice any missed facts.
5. Plot each of these points on the coordinate plane below using the ordered pairs. Label each point with the correct letter.

6. Estimate each quotient by using numbers that are easier to divide.
$1 6 \longdiv { 3 2 7 }$
$\frac { 2 0 } { 1 5 \longdiv { 3 0 0 } } \quad 2 2 \longdiv { 6 2 4 }$
$2 0 \longdiv { 3 0 }$

Lesson Practice

Read each scenario below, and then decide whether the probability of that event occurring is impossible, unlikely, likely, or certain.
I. I will eat dinner tonight. Answers will vary impossible unlikely likely certain
2. I will eat pizza for dinner tonight. impossible unlikely
likely
certain
3. Tomorrow will be Friday. impossible unlike
likely
certain
4. Tomorrow I will read a book. impossible unlikely likely certain
5. I will do chores today.
impossible unlikely likely certain
6. I will wash a car today. impossible unlikely likely certain
7. Someday I will learn to fly like a bird. impossible unlikely likely certain
8. Someday I will learn to drive a car.
impossible unlikely likely certain

Use the spinner to answer the following questions.

I. What is the probability of landing on A? \qquad
2. What is the probability of landing on either A or C ? $\xrightarrow{\frac{6}{8} \text { or } \frac{3}{4}}$
3. What is the probability of not landing on C ? \qquad $\overline{8}$ or $\overline{2}$
4. Is there an equal chance of landing on B or D ? \qquad
5. Is the spinner more likely to land on A or B ? \qquad
6. What is the probability of not landing on C or D ? \qquad
7. What is the probability of landing on E ? $\overline{8}$ or O
8. What is the probability of landing on D ? $\overline{8}$

MATH 4

These toy cars are stored in this basket. Answer the questions below. Write your answers as a fraction when necessary.

I. Which color is most likely to be picked? \qquad red
2. What is the probability of picking a yellow car? \qquad $\frac{1}{10}$
3. What is the probability of picking a red car? \qquad or $\frac{2}{5}$
4. What is the probability of picking a blue car? \qquad
5. Which color is least likely to be picked? blue
6. What is the probability of picking a car that is not green? $\frac{8}{10}$ or $\frac{1}{5}$
7. What is the probability of picking a car that is not red \qquad
8. What is the probability of picking a car that is blue, red, or green? $\frac{7}{10}$

If you flip a quarter or drop it on a table, what is the probability that it will land heads up?

What is the probability that it will land tails up?
When you flip a coin, it is equally likely that it will land heads up or tails up. Let's test it out! You will flip a quarter, or drop it onto a table, 20 times and record the results on the chart below.

Make a prediction! Out of 20 flips, how many times do you think it will land heads up? \qquad Tails up? \qquad Answers will vary

3. Find the perimeter and area of the shapes below.

4. Each yellow shape below has been rotated. Label each rotation with the direction and degree of the turn.

90° counterclockwise
5. Convert each improper fraction to a mixed number.

6. Continue each pattern.

66,55, 44, 33, 22, $\frac{11}{2}, \frac{0}{23}$	Rule: subtract 11
$103,109,115, \underline{121}, \underline{127}, \frac{133}{-12}$	Rule: add 6
$24,18,12,6, \underline{0}, \frac{-6}{-12}$	Rule: subtract 6
$-25,-18,-11,-4, \underline{3}, \underline{10}$	Rule: add 7

$\begin{array}{rrrrrrrrrr}3 \\ 1 2 \longdiv { 3 6 } & 7 \longdiv { 4 9 } & 4 \longdiv { 1 6 } & 8 \longdiv { 6 4 } & 7 \longdiv { 6 3 } & 3 \longdiv { 2 7 } & 9 \longdiv { 8 1 } & 6 \longdiv { 1 8 } & 4 \longdiv { 2 0 } & 6 \longdiv { 3 6 } \\ 1 2 \longdiv { 7 2 } & 3 \longdiv { 1 5 }\end{array}$

m

(4) MATH 4

Lesson Practice

I. For each multiplication problem below, write the decimal point in the correct place in the answer. Write a comma if necessary.

$$
\begin{array}{r}
327 \\
\times 3.6 \\
\hline 1177.2
\end{array} \begin{array}{r}
6.14 \\
\times 29 \\
\hline 178.06
\end{array} \begin{array}{r}
13.8 \\
\times 40 \\
\hline 552.0
\end{array} \begin{array}{r}
2.046 \\
\times \quad 37 \\
\hline 746.7
\end{array} \begin{array}{r}
715 \\
\times 0.5 \\
\hline 357.5
\end{array} \begin{array}{r}
2.29 \\
\times 17 \\
\hline 38.93
\end{array} \begin{array}{r}
1.375 \\
\times \\
\hline 86.625
\end{array}
$$

2. For each problem circle the correct answer based on where the decimal point is placed.

$5.62 \times 32=\quad$ A) $1,798.4$ (B) 179.84

$298.14 \times 8=$ A) 238.512 B $2,385.12$
3. Complete each problem by multiplying and then writing the decimal point in the correct place.

$$
\begin{array}{rrr}
21.6 & 1.294 & 434 \\
\times 24 \\
\hline 518.4 & \times \quad 7 & \times 1.8 \\
\hline 9.058 & 781.2
\end{array}
$$

$$
8.57
$$

$$
147
$$

$$
32.87
$$

$$
\begin{array}{r}
\times \quad 54 \\
\hline 462.78
\end{array}
$$

$$
\begin{array}{r}
3.6 \\
\hline 529.2
\end{array}
$$

$$
\begin{array}{r}
\times \quad 2 \\
\hline 65.74
\end{array}
$$

I. Complete each problem by multiplying and then writing the decimal point in the correct place.

$$
\begin{array}{rrr}
62.3 & 3.017 & 117 \\
\times 15 \\
\hline 934.5 & \times \quad 4 \\
\hline 12.068 & \times 3.6 \\
\hline 421.2
\end{array}
$$

2. Simplify the fractions, and then write them as decimal numbers.

$$
\begin{array}{l|l|l|l|l|l}
\frac{9}{12} & \frac{3}{4} & 0.75 & \frac{12}{24} & \frac{1}{2} & 0.5
\end{array}
$$

3. Round the top factor to the nearest hundred and the bottom factor to the nearest ten, and then estimate the product.

Tina has a basket full of apples, plums, and pears. Answer the questions below. Write the answers as fractions when necessary.

4. Which fruit is most likely to be picked? \qquad
5. What is the probability of picking a plum? \qquad
6. What is the probability of picking a fruit that is not an apple?
$\overline{10}$ or $\overline{2}$
7. What is the probability of picking a pear? \qquad
8. Which fruit is least likely to be picked? \qquad
9. Identify the rules and continue the patterns.
$20,15,10,5, \xrightarrow{-}, \underline{-}, \underline{-10}$
Rule: subtract 5
$-20,-13,-6, \underline{L}, \underline{15}$

$$
\begin{array}{rrrrrrrrrrr}
\frac{8}{48} & 7 \longdiv { 2 8 } & 4 \longdiv { 3 } & 1 2 \longdiv { 4 } & \frac{3}{32} & 8 \longdiv { 2 4 } & 7 \sqrt{56} & 3 \longdiv { 1 2 } & 9 \longdiv { 6 3 } & 7 \longdiv { 4 2 } & 8 \longdiv { 7 2 } \\
1 2 \longdiv { 1 2 0 } & 6 \longdiv { 2 4 }
\end{array}
$$

- Jenny Phillips ${ }^{361}$		

- Jenny Phillips

Review

I. Complete each problem by multiplying and then writing the decimal point in the correct place.

$$
\begin{array}{r}
4.39 \\
\times 21 \\
\hline 92.19
\end{array} \begin{array}{rr}
1.873 & 275 \\
\times \quad 3 & \times 1.9 \\
\hline 5522.619
\end{array}
$$

2. Locate each point on the coordinate plane below. Write the ordered pair for each point. Remember, the first number in each ordered pair gives the horizontal position, and the second number gives the vertical position.

3. Which letter are you most likely to land on, using the spinner to the right? B
4. What is the probability that you will land on the letter A?
\qquad

5. What is the probability that you will land on the letter A or a letter B ?
6. Arrange these decimal numbers from least to greatest. Then round each number to the nearest tenth.

7. Convert each improper fraction to a mixed number.

$$
\frac{21}{6} \quad 3 \frac{3}{6} \quad \frac{7}{2} \quad 3 \frac{1}{2} \quad \frac{47}{9} \quad 5 \frac{2}{9} \quad \frac{11}{4} \quad 2 \frac{3}{4}
$$

| 8 | 7 | 7 | 9 | 5 | 6 | 12 | 8 | 3 | 8 | 7 | 12 | 8 | 7 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\times 4$ | | | | | | | | | | | | | | |
| 32 | $\frac{\times 9}{63}$ | $\frac{\times 4}{28}$ | $\frac{\times 3}{27}$ | $\frac{\times 5}{25}$ | $\frac{\times 8}{48}$ | $\frac{\times 6}{72}$ | $\frac{\times 8}{64}$ | $\frac{\times 4}{12}$ | $\frac{\times 5}{40}$ | $\frac{\times 6}{42}$ | $\frac{\times 7}{84}$ | $\frac{\times 7}{56}$ | $\frac{77}{49}$ | $\times 8$ |
| 96 | | | | | | | | | | | | | | |$|$

風

MATH 4
I. Jarom, Ely, and Kaden have a lawn care business. In October they made $\$ 75.42$ mowing lawns in their neighborhood. If they split the profits equally, how much money will each boy get?

$\$ 25.14$

2. Kelleen and four of her friends sell loaves of bread at the local farmers market. On Saturday they made $\$ 127.55$. If the 5 girls split the money equally, how much did each girl make?
$\$ 25.51$
3. Marcos and Jenni watched their two younger brothers while their parents went on a date. Their parents paid them $\$ 23.50$, and they split it equally. How much money did they each make?

$\$ 11.75$

\sum Lesson Practice

4. Beth, Lily, Joann, and Tiana raised a pig to sell at the county fair. Their pig sold for $\$ 272.92$, and they split the money equally How much did each girl make?

$\$ 68.23$

5. Alberto and his friends put on a play and sold tickets to their friends and family mem bers. They made $\$ 92.70$ on tickets and split it between 10 people. How much did each child make?
$\$ 9.27$
6. Every week Annika and Naomi set up a lemonade stand at the park. Together they made $\$ 86.34$ and split it equally. How much did each girl make?

(4) MATH 4

Review

| $32 \mathrm{oz}=\underline{2} \mathrm{lb}$ | $8,000 \mathrm{lb}=\underline{4} \mathrm{th}$ |
| :--- | :--- | :--- |
| $3 \mathrm{~kg}=3,000 \mathrm{~g}$ | $12,000 \mathrm{~g}=12 \mathrm{~kg}$ |

2. Complete each problem. Write the decimal point in the quotient directly above the decimal point in the dividend.
$8 \longdiv { 3 3 . 6 8 }$
$5 \longdiv { 6 . 7 5 }$
$8 \longdiv { 1 2 . 6 }$
3. Complete each problem by multiplying and then writing the decimal point in the correct place.

$$
\begin{array}{rrr}
42.7 & 3.457 & 227 \\
\times 12 \\
\hline 512.4 & \times \quad 5 & \times 3.4 \\
& \times 17.285 &
\end{array}
$$

4. Multiply each decimal number by moving the decimal point.

$$
\begin{gathered}
72.7 \times 10=727 \\
12.78 \times 100=1,278 \\
8.32 \times 1,000=8,320
\end{gathered}
$$

5. Convert each improper fraction to a mixed number.

$$
\frac{7}{4} \quad 1 \frac{3}{4} \quad \frac{13}{8} \quad 1 \frac{5}{8} \quad \frac{22}{5} \quad 4 \frac{2}{5}
$$

6. Use the box to help answer the questions.
What is $\frac{2}{4}$ of 16 ? What is $\frac{3}{4}$ of 16 ?
8
12

7. Round each decimal number to the nearest whole number.
$72.14 \quad 72$
$3.71 \quad 4$
67.35
67
42.3342
8. Now round each decimal number to the nearest tenth.
$\begin{array}{lllllllll}72.14 & 72.1 & 3.71 & 3.7 & 67.35 & 67.4 & 42.33 & 42.3\end{array}$

Read with your parent or teacher

It's time to review Multiplication Set D using the Multiplication Mastery Chart on page 395 with your parent or teacher.

Parent/Teacher: Quiz your child on Set D facts and indicate which facts your child has mastered in the "Reviewed" column on page 395 . Practice any missed facts.

MATH 4 -

AIIRPIANE Averages

Each child below threw a paper airplane several times and recorded the distance it flew (in feet) each time. For each set of numbers, determine the mean, median, mode, and range.
2. Complete each problem. Write the decimal point in the quotient directly above the decimal point in the dividend.

$$
4 \longdiv { 7 . 8 6 } \quad \begin{array} { r r r }
{ 2 . 5 } & { 5 . 4 } \\
{ 4 \longdiv { 1 2 . 5 } } & { 1 2 \longdiv { 6 4 . 8 } }
\end{array}
$$

3. Complete each problem by multiplying and then writing the decimal point in the correct place.

$$
\begin{array}{r}
7.26 \\
\times 19 \\
\hline 137.94
\end{array} \begin{array}{r}
8.312 \\
\times \quad 2 \\
\hline 16.624
\end{array} \quad \begin{array}{r}
412 \\
\times 1.8 \\
\hline 741.6
\end{array}
$$

Review

$17.85 \div 10=1.785$
$762.0 \div 100=7.62$
$245.3 \div 1,000=0.2453$
5. Add or subtract the mixed numbers. Then write the answers in simplest form in the gray boxes.

$$
\begin{array}{cc}
7 \frac{3}{4}-5 \frac{5}{12}=2 \frac{4}{12} & 2 \frac{3}{15}+1 \frac{1}{5}=3 \frac{6}{15} \\
2 \frac{1}{3} & 3 \frac{2}{5}
\end{array}
$$

6. Find the volume of each solid.

360 cubic ft
$\begin{array} { l l l l l l l l l l l } { \sqrt { 2 7 } } & { 5 \sqrt [8] { 4 0 } } & { 9 \sqrt { 2 7 } } & { 9 \sqrt { 3 6 } } & { 4 \sqrt { 2 4 } } & { 1 2 \sqrt { 9 6 } } & { 4 \sqrt { 1 6 } } & { 5 \sqrt { 2 5 } } & { 6 / 3 6 } & { 7 / 4 9 } & { 1 2 \sqrt { 1 2 4 4 } } \end{array} 8 \longdiv { 8 }$及

- MATH 4

- Jenny Phillips

Multiplication MASTERY

OPTIONAL: Time yourself to see how long this page takes you. Try to beat your previous time from Lesson IO6.

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrrr}
3 & 4 & 6 & 4 & 3 & 6 & 4 & 8 & 10 & 5 & 3 & 6 & 2 & 3 \\
\times 3 & \times 6 & \times 6 \\
\hline 9 & \frac{\times 12}{36} & \frac{\times 7}{48} & \frac{\times 9}{21} & \frac{\times 7}{54} & \frac{\times 7}{28} & \frac{\times 6}{48} & \frac{\times 7}{70} & \frac{\times 9}{45} & \frac{\times 0}{0} & \frac{11}{66} & \frac{\times 12}{24} & \times 9 \\
\hline 27
\end{array}
\end{aligned}
$$

REVIEW GAME: UNITS 1 AND 2

Δ Complete today's Math 4 Mental Math Map Mysteries activity.
\triangle There are no more videos, mini lessons, or practice!
Welcome to Italy! In the next two lessons, we will be taking a trip across the country of Italy, visiting different cities while reviewing some of the most important skills you've learned throughout this course. Follow the itinerary below to move from city to city. Complete each of the problems on the postcard for that city before moving on to the next city.
DAY I
Your plane lands in Italy at 4:45 PM. The plane ride lasted 2
hours and 20 minutes. At what time did you board the plane?

2:25 PM

Your tour of Italy starts in Bolzano, the capital of the South Tyrol region. This beautiful area offers stunning castles and quaint mountain villages amid endless hills and vineyards.

DAY 2
You hop on a bus for the short trip to the famous city of Venice. The bus leaves at 7:23 AM and arrives at 10:50 AM How long was the bus ride?

3 hours 27 minutes

The city of Venice stretches across 118 small islands and doesn't have any major roads, just canals! Today, you take a gondola ride through the historic city.

Math 4 Answer Key

Math 4 Answer Key

Math 4 Answer Key

Rewrite each problem vertically and complete it.
$241.62+92.107$
175.845-47.5 333.727
128.345

Divide or multiply each number by moving the decimal point.

$22.47 \div 10=2.247$	$4.32 \times 10=43.2$
$195.3 \div 100=1.953$	$7.489 \times 100=748.9$
$12,347 \div 1,000=12.347$	$1.234 \times 1.000=1,234$

In the number below, circle the digit in the thousandths place. Draw a square around the digit in the tenths place. Cross out the digit in the hundredths place.

Convert from factored form to
exporn
$5 \times 5 \times 5 \times 5 \times 5=5$
$8 \times 8 \times 8 \times 8 \times 8 \times 8=8^{6}$
$3 \times 3 \times 3 \times 3=3^{4}$
Circle all the prime numbers in the

$$
\text { (2) (3) } 4(5) 6(7) 8910
$$

(11) 12 (13) $1415 \quad 16$ (17) 18

Fill in the perfect squares in the

\% MULTIPLICATION (LESSONS 26.32.61.84.86.95 \& 1 IO)

Complete each multiplication problem. Remember to write the decimal point in the answer if necessary.

$$
\begin{array}{ccc}
11 \times 300=3,300 & 8 \times 5,000=40,000 \\
7 \times 40,000=280,000 & 12 \times 20=240 \\
73.4 & 2.419 & 682 \\
\times 18 \\
1,321.2 & \frac{\times 6}{14.514} & \frac{67.4}{5,046.8}
\end{array}
$$

Complete each multiplication problem. Remember to write the decima point in the answer if necessary.

5.13	1.549	432
$\times 25$		
128.25	$\times \quad 8$	
12.392	$\times 6.6$	
$2,851.2$		

$9 \times 7,000=63,000$
$12 \times 400=4,800$

CONVERSIONS (Lessons 31. 33.79.80.102 \& 104) \&

Complete each conversion.

$24 \mathrm{in}=2 \mathrm{ft}$	$7 \mathrm{yd}=21 \mathrm{ft}$
$100 \mathrm{~cm}=1 \mathrm{~m}$	$9 \mathrm{~km}=9.000 \mathrm{~m}$
$3 \mathrm{tn}=6.000 \mathrm{lb}$	$3,000 \mathrm{~g}=3 \mathrm{~kg}$
$16 \mathrm{oz}=1 \mathrm{lb}$	$6 \mathrm{~kg}=6.000 \mathrm{~g}$
$12 \mathrm{c}=6 \mathrm{pt}$	$4 \mathrm{gal}=16 \mathrm{qt}$
$2,000 \mathrm{~mL}=2 \mathrm{~L}$	$23 \mathrm{~L}=23,000 \mathrm{~mL}$

Complete each convesion.	
$5,280 \mathrm{ft}=\underline{1} \mathrm{mi}$	$18 \mathrm{ft}=\underline{6} \mathrm{yd}$
$8,000 \mathrm{lb}=\underline{4} \mathrm{tn}$	$5,000 \mathrm{~g}=\underline{5} \mathrm{~kg}$
$1 \mathrm{gal}=\underline{8} \mathrm{pt}$	$12 \mathrm{pt}=\underline{24} \mathrm{c}$

路

Math 4 Answer Key

ORDER OF OPERATIONS \& PATTERNS (LESSONS 40, 85, 91 G 94)

Use the order of operations to complete each problem.
$10 \times(8+4)+2=122$
$3^{2}+15-(40 \div 8)=19$
$24 \div(12 \div 2)+4^{2}=20$

Identify the rules and continue the patterns.
$32,24,16,8, \underline{0},-\frac{-8}{}, \underline{-16},-24$ Rule: subtract 8 $-26,-19,-12,-5,2,9,16$ Rule: $\underline{\text { add } 7}$

$\therefore \quad \square$ Additional Practice

dentify the rules and continue the patterns.
$-19,-14,-9,-4, \underline{6}, \underline{11}, \underline{16}$ Rule: add 5
I5, II, 7, 3, -1 $, \underline{-5}, \underline{-9}, \underline{-13}$ Rule: subtract 4

Use the order of operations to complete each problem.

$$
\begin{array}{r}
10+30 \div(3 \times 5)=12 \\
6^{2}-8 \times 2+4=24 \\
32-(16+7)+3^{2}=18
\end{array}
$$

\square ELAPSED TIME (Lessons 18 \& 25)

Karen is running in a IOK race. She starts at 8:42 AM and finishes at 10:08 AM. How long did it take Karen to complete the race?

Carlos baked four dozen cookies for a bake sale at his church. He started at 2:32 PM, and it took him 4 hours and 16 minutes. What time did he finish baking?

$: \quad$ Additional Practice

At 9:5I AM you started your science lesson. $A+11: 24$ AM you finished the last problem. How long did the lesson take you to complete?

Next, you started working on a writing project. You started at 12:37 PM, and it took 2 hours and 7 minutes to complete. What time did you finish writing?

\% MULTIPLES \& FACTORS (LESSON 42)

List the multiples of 3 from 3 to 30 .
$3, \underline{6}, \underline{9}, \underline{12}, \underline{15}, \underline{18}, \underline{21}, \underline{24}, \underline{27}, 30$
List the multiples of 8 from 8 to 80 .
$8, \underline{16}, 24, \underline{32}, \underline{40}, \underline{48}, \underline{56}, \underline{64}, \underline{72}, 80$

Write all the factors for each number below.

1×12
2×6
2×6
2×8
4×4
$1,2,3,4,6,12$
$1,2,4,8,16$
$1,3,7,21$

A.:......: $\quad \square$ Addition al Practice

List the multiples of 6 from 6 to 60 .
$6, \underline{12}, \underline{18}, \underline{24}, \underline{30}, \underline{36}, \underline{42}, \underline{48}, \underline{54}, 60$

Find the missing factors.

28	36	40
$2 \times \frac{14}{4}$	$3 \times \frac{12}{4}$	$5 \times \underline{8}$
4×7	6×6	10×4

\%. PLACE VALUE. ROUNDING \& COMPARING

 (Lessons 7. II. 19.92. 93 \& 98)Arrange the decimal numbers from greatest to least. Then round each number to
the nearest tenth. Greatest

Circle the digit in the ten thousands place. Put a box around the digit in the millions place. Underline the digit in the ones place. Round the number to the nearest million

$5,000,000$

Circle the digit in the hundreds place. Put a box around the digit in the ten thousands place. Underline the digit in the tens place. Round the number to the nearest million.

3,000,000

Now round the same number to the hundred thousands place.
$2,742,684$
2,700,000

Arrange these decimal numbers from least to greatest.

Least	
321.017	321.017
321.170	321.071
	321.071
	Greatest

AREA. PERIMETER \& VOLUME (Lessons 36. 56. 68 \& 71)
Find the perimeter of each shape.

Perimeter $=48$ cm

$$
\begin{aligned}
& \text { Find the area of each shape. } \\
& \text { Area }=42 \\
& 7 \text { in } \\
& \text { sq in }
\end{aligned}
$$

Find the volume of each solid.

Volume $=$ \qquad cubic cm

Perimeter $=$ \qquad m
Area $=$ \qquad _sqft

Volume $=600$ cubic in

$\therefore \quad$ Additional Practice

In the box on the left, write the formula used for finding the area of a rectangle. In the box on the right, write the formula used for finding the area of a triangle. Refer to Lessons 36 and 56 if necessary.

Find the perimeter and area of each shape.

Perimeter $=36 \mathrm{~cm}$
Perimeter $=16$ in Area $=12 \mathrm{sq}$ in

In the circle, write the formula used for finding the volume of a rectangular prism, and then find the volume of the solid.

Volume $=315 \quad$ cubic cm

Good Beantiful

goodandbeautiful.com

