

Book 1 Table of Contents

About the Courseiv
Frequently Asked Questions V
Unit 1 1
Lesson 1: Opposites and Absolute Value4
Lesson 2: Prime Factorization 8
Lesson 3: Greatest Common Factors 12
Lesson 4: Fractions: Part 1 16
Lesson 5: Fractions: Part 2 20
Lesson 6: Properties of Triangles 24
Lesson 7: Area of Parallelograms and Trapezoids 28
Lesson 8: Least Common Multiples 32
Lesson 9: Adding, Subtracting, and Multiplying Fractions and Mixed Numbers 36
Lesson 10: Number Patterns: Infinite Sequences 41
Lesson 11: Decimal Numbers: Expanded Notation and Comparisons 45
Lesson 12: Adding and Subtracting Decimal Numbers 49
Lesson 13: Multiplying Decimal Numbers 53
Lesson 14: Negative Fractions and Decimals on Number Lines 57
Lesson 15: Museum Logic 61
Lesson 16: Division of Multi-Digit Numbers 66
Lesson 17: Dividing Decimal Numbers 70
Lesson 18: Exponent Review and Expanded Notation with Exponents 74
Lesson 19: Rational Numbers with Exponents 78
Lesson 20: Order of Operations 82
Lesson 21: Perimeter and Area of Irregular Figures 86
Lesson 22: Surface Area and Nets 90
Lesson 23: Conversions Between Fractions, Decimals, and Percents: Part 1.. 94
Lesson 24: Conversions Between Fractions, Decimals, and Percents: Part 2.. 98
Lesson 25: Reciprocals and Division with Fractions 104
Lesson 26: Properties 108
Lesson 27: Coordinate Planes 112
Lesson 28: Unit 1 Review 116
Lessons 29-30: Unit Assessment 120
Unit 2. 127
Lesson 31: Addition and Subtraction of Integers 130
Lesson 32: Multiplication and Division of Integers 134
Lesson 33: Square and Cube Roots 138
Lesson 34: Expressions 142
Lesson 35: Evaluating Expressions 146
Lesson 36: Transformations on a Coordinate Plane and Symmetry 150
Lesson 37: Geometric Figures 154
Lesson 38: Measuring \& Constructing Angles/ Complementary \& Supplementary Angles 158
Lesson 39: Interior Angles of Triangles. 162
Lesson 40: Interior Angles of Quadrilaterals 166
Lesson 41: Circles and Semicircles 170
Lesson 42: Area and Circumference of Circles and Semicircles 174
Lesson 43: Equations 178
Lesson 44: Finding the Percent of a Number 182
Lesson 45: Arches National Park Puzzles. 186
Lesson 46: Combining Like Terms. 188
Lesson 47: Distributive Property 192
Lesson 48: Factoring 196
Lesson 49: Solving Equations with Addition \& Subtraction. 200
Lesson 50: Solving Equations with Multiplication \& Division 204
Lesson 51: Solving Equations with Decimals \& Fractions 208
Lesson 52: Solving Percent Problems Using Fractions. 212
Lesson 53: Percents with Decimals \& Fractions 216
Lesson 54: Percents: Finding the Whole 220
Lesson 55: Percents: Finding the Percent 224
Lesson 56: Complex Fractions 228
Lesson 57: Identifying Turns. 232
Lesson 58: Unit 2 Review 236
Lessons 59-60: Unit Assessment 240
Reference Chart 247

ABOUT THE COURSE

Supplies Needed

© Simply Good and Beautiful Math 6 Course Book 1 and Simply Good and Beautiful Math 6 Course Book 2
\triangle Simply Good and Beautiful Math 6 Answer Key
Δ Simply Good and Beautiful Math Scratch Pad or other scratch paper
Δ Device to access videos (highly recommended)
\triangle Pencils
\triangle Scissors
© 2 standard dice
Δ Colored pencils
Δ Protractor
\triangle Ruler

- Bowl
\triangle Tape or glue
\triangle Paper
© Tape measure

Course Overview

Math 6 consists of Books 1 and 2. There are 120 total lessons divided into four units. Each unit ends with a unit review and assessment. The course is designed to be completed by the student independently, but parents/teachers can choose to be as involved in the lessons as they would like to be.

Lesson Overview

Most lessons are four pages and consist of a warm-up, video lesson, mental math, mini lesson, practice, and review. Warm-Up: An activity that applies to the lesson topic.
Video Lesson: Videos provide detailed teaching and interactive guided practice of the lesson topic. Scan the QR code or go to goodandbeautiful.com/Math6 to access the videos. Videos are about 12-15 minutes in length.
Mental Math Checkup: A quick review of mental math skills and facts practice.
Mini Lesson: A concise written lesson on the topic.
Practice: Practice that is dedicated to the lesson topic. Review: Daily review of topics from previous lessons.

Getting Started

Simply open the first course book. Students may choose to watch the video lesson or just read the mini lesson if they feel confident in the lesson topic. Please note that videos may contain material not included in the written mini lesson. Students may complete the warm-up before or during the video. Mental math may be completed at any point during the lesson. After completing the video and/or mini lesson, the student should complete the lesson practice and review sections. Parents/teachers should check the student's work daily and provide immediate help and feedback. Students who struggle with the lesson practice should be encouraged to review the mini lesson or the video for help. Note: If printing at home, print pages at actual size,

A Reference Chart is included at the end of each course book.

Frequently Asked Questions

How many lessons should my student do each week?

Δ There are 120 lessons in the course. If the student completes four lessons per week, he or she will complete the course in a standard school year with typical breaks for vacation or sickness.

How long do lessons take?
Δ The average time to complete a lesson is $45-60$ minutes. This includes time to watch the video and complete the course book sections.

What if my child is too slow/fast?

\triangle If your child takes longer than average but is understanding and retaining information, don't worry. You may want to break up the lessons. Watch the video and begin the practice. Then finish the practice and complete the review section at another time.
Δ To avoid holes in his or her math foundation, we suggest not skipping entire levels if your child works more quickly than average but is learning new concepts. Consider having your child do multiple lessons a day to complete the course faster.
Δ If your child takes less time than average and seems to already know all the information, consider giving the Unit Assessments to see if he or she can skip any units or move on to the next course.

Do you include any specific doctrine?

\triangle No, the goal of our curriculum is not to teach doctrines specific to any particular Christian denomination but to teach general principles such as honesty, hard work, and kindness. All Bible references in our curriculum use the King James Version.

Does my student have to watch the videos?

Δ The videos contain the bulk of the teaching and are highly recommended. However, if your student feels confident in the topic being taught, he or she can skip the video and read the mini lesson instead. A student who struggles with the lesson practice should be encouraged to go back and watch the video.
Δ Some families prefer to have the parent/teacher teach the child using the mini lesson rather than have the child watch the video lesson independently.

Is Math 6 completed independently by the child?

\triangle Yes, Math 6 is designed for your student to complete independently, though at times students may need parent/ teacher assistance to understand a concept. Parents/teachers will need to check the child's work and should do so on a daily basis when possible, providing immediate feedback.
Is Math 6 a spiral or mastery program?
Δ Math 6 is a spiral course, constantly reviewing concepts your student has learned to ensure understanding and retention of information.

What if there isn't room to complete the work?

Δ Students should always keep scratch paper on hand while completing the lessons. The Simply Good and Beautiful Math Scratch Pad is available for purchase.
Is a calculator used in Math 6?
Δ This course is designed to be completed without the use of a calculator. Lesson 117 is an introduction to calculators. A scientific calculator is helpful in this lesson but isn't necessary. Calculators should not be used for any other lessons.
\% LESSONS 1-30 \&

New Concepts Taught

Δ absolute value
Δ area of a parallelogram
Δ area of a trapezoid
\triangle distance on a coordinate plane
Δ division with a three-digit divisor and a six-digit dividend
© expanded notation of decimal numbers through the millionths place
© expanded notation with exponents
Δ greatest common factor of three-digit numbers
Δ identity and inverse properties
\triangle negative fractions and decimal numbers on a number line
Δ nets and surface area of trapezoidal prisms and parallelepipeds
Δ prime factorization of four-digit numbers
Δ prime factorization to determine least common multiples
Δ rational numbers with exponents

Concepts Reviewed
 and Expanded Upon

\triangle addition, subtraction, multiplication, and division of decimal numbers
Δ addition, subtraction, multiplication, and division of fractions
Δ area of a triangle
Δ area of irregular figures
\triangle associative, commutative, and distributive properties
Δ convert between fractions, decimal numbers, and percents
Δ convert between improper fractions and mixed numbers
Δ divisibility rules
Δ equivalent fractions
Δ fraction comparisons
Δ fractions in simplest form
\triangle negative numbers
\triangle number patterns and infinite sequences
\triangle order of operations
Δ triangle classification

Watch the video lesson and/or read the mini lesson.

Video Lesson

Scan the QR code or watch the video lesson on goodandbeautiful.com/Math6. This section is completed during the video.

Warm-Up

The warm-up is discussed in the video
This section can be completed either before or during the video.
Using a scale that counts by one, label the missing numbers on each of the number lines.

$$
|14| \bigcirc|-14|
$$

Mental Math Checkup

Write the answers in the spaces provided. This section is completed independently.
I. Count by 100 from 0 to 1,000 .
2. Add 1,000 to each number.
$239,719 \quad 76,736$
3. What is the third month of the year?

Mini Lesson

An integer is a number with no fractional part.
Examples of integers: $34,-2,0,15,-55,-102$
Examples of non-integers: $\frac{1}{4}, 3.2, \frac{7}{8}, \pi, 4.333 \ldots$
Integers can be positive or negative. Negative numbers are numbers less than zero, and positive numbers are numbers greater than zero. Zero is not positive or negative. A negative sign is written in front of negative numbers.

Opposites are two numbers that are the same distance from zero but on opposite sides of a number line.

Examples: 5 and -5 are opposites. -8 and 8 are opposites.

Absolute value is the distance a number is from zero on a number line. Distance cannot be negative, so absolute values are never negative. A number and its opposite have the same absolute value.

Examples: The absolute value of 5 is 5 . The absolute value of -5 is 5 . Both 5 and -5 are five units from zero.

A vertical line on each side of a number indicates absolute value. Examples: $|5|=5$ and $|-5|=5$

Comparisons Using Absolute Value

To compare two absolute values, find the absolute value of each number, then compare using $a<,>$, or $=$.

Compare the absolute value of -45 and the absolute value of 30 .

$$
\begin{gathered}
|-45| \bigcirc|30| \\
45>30 \\
|-45|>|30|
\end{gathered}
$$

-45 is farther from zero than 30 .

Compare the absolute value of 7 and the absolute value of -10 .

$$
\begin{gathered}
|7| \bigcirc|-10| \\
7<10 \\
|7|<|-10|
\end{gathered}
$$

7 is closer to zero than -10 .

Practice

1. If the number is an integer, write "yes" on the line. If not, write "no."
7 \qquad

$$
-40
$$

\qquad 0 \qquad $\frac{4}{5}$ \qquad 5.1 \qquad
$\frac{1}{3}$ \qquad
-21 \qquad -8.4 \qquad
2. Write each of the expressions as an integer. Some examples are given.
$\left.\begin{array}{llll}\text { a loss of } \$ 2,000 & -2,000 & 500 \mathrm{ft} \text { below sea level } \\ \text { a drop of } 15{ }^{\circ} \mathrm{F} & - & \text { a debt of } \$ 10 & - \\ \text { a price increase of } \$ 60 & -60 & \text { a deposit of } \$ 50 & - \\ 125 \mathrm{ft} \text { above sea level } & - & \text { a withdrawal of } \$ 50 & -50 \\ 30 \text { degrees below zero } & & \text { a gain of } \$ 45 & \end{array}\right]$
3. Find the opposite of each number. Use the number line for help if necessary.

Number	Opposite	Number	Opposite
4		12	
7		-12	
-2		-5	
-1		8	
0		3	

4. Find the absolute value of each number.

$\|450\|$	$\|-22\|$	$\|0\|$	$\|-108\|$
$\|15\|$	$\|-15\|$	$\|-3\|$	$\|18\|$

5. Find the change from the first temperature to the second. Write the change as an integer.
$5^{\circ} \mathrm{F}$ to $15{ }^{\circ} \mathrm{F}$ \qquad

$$
-50^{\circ} \mathrm{F} \text { to }-25^{\circ} \mathrm{F}
$$

$0^{\circ} \mathrm{F}$ to $-15^{\circ} \mathrm{F}$ \qquad

$$
-10^{\circ} \mathrm{F} \text { to }-35^{\circ} \mathrm{F}
$$

\qquad
$25^{\circ} \mathrm{F}$ to $15{ }^{\circ} \mathrm{F}$ \qquad $-5^{\circ} \mathrm{F}$ to $15^{\circ} \mathrm{F}$ \qquad
6. Compare the following using $<,>$, or $=$.
$|0| \bigcirc|-5|$

$$
7 \bigcirc|2| \quad|-4| \bigcirc|4|
$$

$|5| \bigcirc 7 \quad|-15| \bigcirc|-23| \quad 32 \bigcirc|-30|$
7. Cross off the incorrect absolute values.

$$
\begin{array}{ll}
|-15|=15 & |-15|=-15 \\
|-5|=-5 & |-5|=5 \\
|15|=-15 & |15|=15 \\
|5|=5 & |5|=-5
\end{array}
$$

Proctice

8. Circle the greater value in each row.
a. the opposite of 3
b. $|-25|$
c. $|-14|$
d. the opposite of 4
e. $|10|$
f. the opposite of 8
१. Circle the correct word in italics to make a true statement.

The absolute value of a positive number is a positive / negative number. The absolute value of a negative number is a positive / negative number. The opposite of a positive number is a positive / negative number. The opposite of a negative number is a positive / negative number.

IO. Complete the chart below. The first row is given as an example.

Number	Opposite	Absolute Value
$-\frac{5}{8}$	$\frac{5}{8}$	$\frac{5}{8}$
3.4		
-27.482		
$-\frac{1}{5}$		
$\frac{3}{10}$		
-50.5		

Review

I. Circle the even numbers and cross out the odd numbers.
589,137
1,792,870
84,781,791
901,728,176
2. Compare each pair of numbers using \langle,$\rangle , or =$.
$6,371,278 \bigcirc 6,372,278$
5.810 5.81
$431,081 \bigcirc 431,801$
3. Complete each problem.
$654 \div 3=$ \qquad $382,718+12,795=$ \qquad
$5,361 \times 12=$ \qquad $265,710-12,795=$ \qquad
4. List the next five multiples of each number.

20, \qquad
50, \qquad
12, \qquad
5. List the factors of each number.

25: \qquad
32: \qquad
100: \qquad , \qquad , —. , ______

ADDING. SUBTRACTING, AND MULTIPLYING FRACTIONS AND MIXED NUMBERS
\square Watch the video lesson and/or read the mini lesson.

Video Lesson

Scan the QR code or watch the video lesson on goodandbeautiful.com/Math6.
$7 \frac{3}{4}-3 \frac{1}{4}$

$$
\frac{2}{3} \times \frac{5}{9} \times \frac{3}{10}
$$

Mm\%nํa

Mental Math Checkup
I. Count by 30 from 0 to 300 .
2. Multiply each number by 1,000 .

712	
1,270	42

3. How many nickels are in $\$ 2.00$?

Adding and Subtracting Fractions

When adding or subtracting fractions with different denominators, first convert the fractions to equivalent fractions with a common denominator. Then add or subtract the numerators. The denominator stays the same.
$\frac{3}{10}+\frac{7}{8}=\frac{12}{40}+\frac{35}{40}=\frac{47}{40}=1 \frac{7}{40}$

Subtracting a Fraction or Mixed Number from a Whole Number

To subtract a fraction or mixed number from a whole number, write the whole number as a mixed number or improper fraction by taking 1 from the whole number and writing it as a fraction equal to 1 . Use the same denominator as the fraction being subtracted. Then subtract.

$$
\begin{array}{lr}
1-\frac{8}{15}= & 12-4 \frac{1}{2}= \\
\frac{15}{15}-\frac{8}{15}= & 11 \frac{2}{2}-4 \frac{1}{2}= \\
\frac{7}{15} & 7 \frac{1}{2}
\end{array}
$$

Multiplying Fractions by Fractions, Whole Numbers, and Mixed Numbers

To multiply fractions, multiply the numerators, and then multiply the denominators.

$$
\frac{6}{7} \times \frac{11}{12}=\frac{66}{84}=\frac{11}{14}
$$

To multiply a fraction by a whole number, first convert the whole number to a fraction by writing it with a denominator of 1 . Then multiply the fractions.

$$
5 \times \frac{4}{15}=\frac{5}{1} \times \frac{4}{15}=\frac{20}{15}=1 \frac{5}{15}=1 \frac{1}{3}
$$

To multiply mixed numbers, first convert the mixed numbers to improper fractions. Then multiply the fractions.

$$
2 \frac{1}{5} \times 3 \frac{1}{2}=\frac{11}{5} \times \frac{7}{2}=\frac{77}{10}=7 \frac{7}{10}
$$

Canceling Before Multiplying Fractions

Canceling is a way to simplify fractions before multiplying them. To cancel, find one numerator and one denominator that are divisible by the same factor. Divide both the numerator and the denominator by that factor and write the quotients in place of the canceled numbers. Then multiply the fractions.

$$
\begin{aligned}
& \frac{2}{7} \times \frac{3}{\frac{1}{2}}=\frac{3}{14} \\
& \frac{1}{9} \times \frac{2}{2}=\frac{2}{25} \\
& \frac{\frac{1}{7}}{\frac{7}{10}} \times \frac{\frac{1}{2}}{\frac{4}{8}} \times \frac{3}{\frac{9}{14}}=\frac{3}{5}
\end{aligned}
$$

Cancellations may be performed in any order; just make sure to divide both a numerator and a denominator by the same number.

Map of the Museum

Riddle

Your tour group is in the clues that will help you and your friends find the location of your group.

PUZZLE 1

Find the value of each image in this multiplication table. The sum of the values for each symbol is the clue for the riddle.

$+$ $+$ $=T$
$-\mathcal{B}<-$ Pull this page out and cutapart the puzzle cards.

PUZZLE 4

In the museum, find the two pyramids with numbers and copy them on this card. Start at the bottom right vertex. As you travel around to each vertex, figure out which operations must be performed with the numbers to equal the number in the middle. Then use the same operations and travel in the same direction to find the answer to this puzzle. See the example on the back of this card. The value for the letter in the triangle is the clue for the riddle. \qquad

PUZZLE 2

PUZZLE 3

Place each of the digits below in one of the suns. The three numbers connected by lines need to add up to 15 . The number found in the yellow sun is the clue for the riddle. Three numbers are already placed for you.

See the example problem and solution on the back of this card.

PUZZLE 5

Find the values for each of the symbols in the illustration. For each side of the red and green squares, write the difference between the corners in the circle on that side. The numbers at the corners of the blue square should be the same. That number is the value for the letter found in the center of the blue square and is the clue for the riddle

HINT: Subtract the smaller number from
the larger number.

See the example problem and solution on the back of this card.

PUZZLE 6

Find the symbols in the illustration. Then complete each division problem. The number found in the yellow square is the clue for the riddle.

Fractions, Decimals \& Number Lines Lessons 4 \& 14

I. Use fractions and mixed numbers to fill in the missing values on the number line.

2. Plot these points on the number line. Point $A:-1.25$ Point $B: 0.75$ Point $C:-0.5$

Opposites \& Absolute Value Lesson

I. Find the opposite of each number.
9 \qquad
$\frac{4}{7}$ \qquad

$$
-1.05
$$

\qquad
2. Find the absolute value of each number.
\qquad $|-71|=$ \qquad $\left|-\frac{1}{3}\right|=$
3. Compare the following using \langle,$\rangle , or =$.

$$
|-45| \bigcirc|-54| \quad|38| \bigcirc|-38|
$$

LCM:
 LCM:

Prime Factorization, GCF \& LCM Lessons 2,3 \& 8

I. Find the prime factorization of each number. Then find the GCF of the numbers.

12: \qquad
32: \qquad GCF: \qquad
2. List the first few multiples of each number. Then find the LCM of the numbers.

10: \qquad 8: \qquad

Addition, Subtraction, Multiplication, Division \& Rounding Lessons 5, , , 12, 13, 16, 17 \& 25

I. Add or subtract.
$2 \frac{1}{2}+\frac{4}{5}=$ \qquad $4-\frac{2}{3}=$ \qquad $6.712-4.8=$ \qquad
3. Round 12.870513 to the place values below. ten thousandths: \qquad hundred thousandths: \qquad
thousandths: \qquad
2. Multiply or divide. \uparrow Hint: You can cancel before multiplying fractions. $\frac{12}{25} \times \frac{10}{16}=$ \qquad $\frac{1}{5} \div \frac{3}{7}=$ \qquad
$4.183 \times 3.9=$ \qquad $5.75 \div 0.25=$ \qquad

Conversions Between

Fractions, Decimals \& Percents

Complete the table.

Fraction	Decimal	Percent
$\frac{2}{5}$		
	0.64	
		90%

Expanded Notation Lessons || \& 18

I. Write 8.517 in expanded notation using ... fractions \qquad decimals \qquad
2. Write $\left(8 \times 10^{5}\right)+\left(7 \times 10^{4}\right)+\left(2 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+\left(8 \times 10^{0}\right)$ in standard form.

China is home to many endangered animals, including the South China tiger and the giant panda

Rational Numbers with Exponents \& Order of Operations Lessons 19 \& 20

I. Underline the integers. Circle the rational numbers.
$5.2-\frac{5}{7}$
-12
-2.82
0
$4 \frac{1}{3}$
2. Simplify the expressions.
$\left(\frac{3}{5}\right)^{2}=$ \qquad $50+(7-3)^{2} \div 2=\quad \frac{9-2^{2}}{4 \cdot 5}=$
\qquad

Lassons 2800^{5} UNiT ASSESSMEnT

Unit assessments give you practice with the math concepts learned in this unit without having you overpractice concepts that you have mastered. These assessments also give you practice working on math problems for an extended period of time. This helps you to extend focus and attention span and to be better prepared for any type of testing you will have to do in the future. Here are some tips: First, always read the instructions carefully. Sometimes you can get answers wrong simply because you did not understand the instructions. Second, do not rush through exercises you think you already know. Instead, do your work carefully. Sometimes you can get answers wrong, even though you understand the concept, just because you rushed. Finally, if you feel you are having trouble focusing, take a quick break to do something else, like ten jumping
jacks, and then come back. There are no videos, mini lessons, or practice problems for Lessons 29-30.
(For Lesson 29, complete all the exercises with purple headers only. You may cover the additional practice sections or fold the page to concentrate only on the purple sections. Have your parent or teacher correct the work. If there are mistakes in a section, your parent or teacher will check the orange "Additional Practice" checkbox for that section.
For Lesson 30, complete all the orange sections that are checked. If you still make multiple mistakes, review those sections. All the principles will be reviewed again in upcoming units. If you have only a few or no orange sections to practice, you may move on to the next lesson.
Parents/teachers may determine if the student may use the Reference Chart for the assessment. It is recommended that the student first try the assessment without the Reference Chart and then refer to it if needed.

Find the opposite of each number.
3 \qquad $-\frac{4}{5}$ 6.2 \qquad

Find the absolute value of each number.

$$
|-8|=_\quad|7.7|=_\quad|-14|=
$$

Compare the following using \langle,$\rangle , or =$.

$$
|-26| \bigcirc|26| \quad|-32| \bigcirc|-36|
$$

OPPOSITES \& ABSOLUTE VALUE
The numbers 5 and -5 are opposites.
Absolute values are never negative. $|-2|=2$
Complete the chart.

Number	Opposite	Absolute Value
9		
$-\frac{3}{4}$		
-18.02		
$7 \frac{1}{6}$		

PRIME FACTORIZATION \& GREATEST COMMON FACTORS (LESSONS 2 \& 3)

Use a factor tree to find the prime factorization of 150 .
150
/

Find the prime factorization of each number. Then find the GCF of the numbers.

30: \qquad
GCF: \qquad
24: \qquad

FRACTIONS
(LESSONS 4 \& 5)

Write the fractions in order from least to greatest in simplest form. $\frac{6}{12}, \frac{3}{8}, \frac{8}{15}$
Complete the chart.

Improper Fractions	Mixed or Whole Numbers
$\frac{23}{4}$	
	$5 \frac{3}{7}$
$\frac{108}{9}$	

Addition al Practice

PRIME FACTORIZATION \& GREATEST COMMON FACTORS

Separate each composite number into a factor pair until every factor is a prime number.

Find the prime factorization of each number. Then find the GCF of the numbers.
\qquad
GCF: \qquad
45: \qquad

Addition al Practice

FRACTIONS

Simplify a fraction by dividing its numerator and denominator by the same whole number.

Write the fractions in order from least to greatest in simplest form.

$$
\frac{5}{7}, \frac{8}{16}, \frac{10}{30}
$$

Match the improper fractions and whole or mixed numbers.

$\frac{15}{3}$	$7 \frac{1}{11}$
$\frac{24}{5}$	5
$\frac{78}{11}$	$4 \frac{4}{5}$
$\frac{12}{5}$	$2 \frac{2}{5}$

TRIANGLES, PARALLELOGRAMS.

 ZTRAPEZOIDS. NETS \& SURFACE AREA. © IRREGULAR FIGURES (LESSONS 6.7.21. 22)Draw an isosceles right triangle.

Find the area of the figure.

$A=$ \qquad

Find the surface area of the square pyramid.

$S A=$ \qquad

LEAST COMMON MULTIPLES (LCM)

 (LESSON 8)Find the LCM of the numbers.
6: \qquad
9: \qquad
12: \qquad
LCM of 6, 9 , and 12 : \qquad

Additional Practice

TRIANGLES, PARALLELOGRAMS, TRAPEZOIDS,
NETS \& SURFACE AREA,
PERIMETER \& AREA OF IRREGULAR FIGURES
Properties of triangles and area formulas are listed on the Reference Chart.

Draw a scalene obtuse triangle.

Find the area and perimeter of the figure.
$A=$ \qquad $P=$ \qquad

Additional Practice

Find the surface area of the trapezoidal prism.
$S A=$ \qquad

List multiples of each number or use prime factorization.
Find the LCM of the numbers.
20: \qquad
10: \qquad
15: \qquad
LCM of 20,10 , and 15 : \qquad

8
 COORDINATE PLANES (LESSON 27)

Write the coordinates of each point.
Point A : \qquad Point B : \qquad Point C: \qquad
Plot and label each point. Then write the quadrant where that point is located.

Point $D:(7,-5)$	quadrant
Point $E:(-9,9)$	quadrant -
Point $F:(-3,-5)$	quadrant
Point $G:(7,6)$	quadrant

What is the distance between Point D and Point F ? \qquad
What is the distance between Point G and Point D ? \qquad

Additional Practice

COORDINATE PLANES

The first number in an ordered pair gives the horizontal position. The second number gives the vertical position.

Write the coordinates of each point below.
Point A : \qquad Point B : \qquad Point C : \qquad
Plot and label each point.
Then write the quadrant where that point is located.
Point $D:(4,-9)$
quadrant \qquad
Point $E:(-8,-9)$ quadrant \qquad
What is the distance between Point D and Point E ?

UNIT 2 OVERVIEW

2 LESSONS 31－60 \＆

New Concepts Taught

\triangle addition and subtraction of integers
Δ adjacent angles
Δ area and perimeter of a semicircle
\triangle central angles
Δ coefficients，constants，terms，and variables in expressions
 angles
Q complex fractions
\triangle convert between turns and degrees
Δ cube roots
d decimal percentages
Q distance between two points on a coordinate plane
\triangle equations with decimals and fractions
Δ evaluate expressions with exponents， fractions，and negative numbers
Δ evaluate expressions with more than one variable
是 factor an expression
Δ find the percent when the whole and a part are known
Δ find the whole when the percent and a part are known
Q identify and combine like terms
且 missing angle measures in triangles and quadrilaterals
Q multiple transformations on a coordinate plane
Δ multiplication and division of integers
是 names of quadrants on a coordinate plane
Δ one－step equations with addition and subtraction
Δ one－step equations with multiplication and division
Δ parts of a circle：central angles and chords
percent problems with fractions
园 sum of the interior angle measures of a quadrilateral
Δ sum of the interior angle measures of a triangle

Extra Supplies Needed

© colored pencils
Q protractor
Δ ruler

Concepts Reviewed
 and Expanded Upon

Q angle classification
Q area and circumference of a circle
B check solutions
Δ differences between an equation and an expression
Q distributive property
g graph in all four quadrants
D measure and construct angles using a protractor
Δ name geometric figures with symbols and letters
Δ percent of a number
$\Delta \mathrm{pi}$
Δ polygons and other geometric figures
Δ quadrilateral classification
Q radius and diameter
Δ reflectional，translational，and rotational symmetry
S square roots
Δ transformations on a coordinate plane
Δ volume of a cube

Video Lesson

Scan the QR code or watch the video lesson on
goodandbeautiful.com/Math6.
\square Watch the video lesson and/or read the mini lesson.

2. What is $\frac{1}{5}$ of 10 ?
3. Start at 12. Perform each operation in the following order: $-2,+5, \div 3, \times 10, \div 2$

Mini Lesson

A protractor is a tool for measuring and drawing angles.
To MEASURE an angle, follow these steps:

1. Place the midpoint of the protractor on the vertex of the angle.
2. Line up one side of the angle with the base line on the protractor.
3. Read the degrees where the other side of the angle crosses
the number scale. Make sure to read the correct scale.
The angle above measures 130°.

To DRAW an angle, follow these steps:

1. Draw a point at the midpoint of the protractor.
2. Draw another point at 0°.
3. Connect the points with a ray.
4. Draw a point to mark the degree of the angle. Make sure to read the correct number scale. This example shows a 40° angle.
5. Draw a ray by connecting the point at the midpoint with the point marking the degrees.

Notice that an angle can be drawn using either scale (highlighted in yellow) on a protractor.

Adjacent angles are two angles that have the same vertex and a common side.

Angles 1 and 2 are adjacent angles.

Angles 3 and 4 are not adjacent. They do not have a common vertex.

Complementary angles are two angles whose sum is 90°. When complementary angles are adjacent, they form a right angle. Angles do not have to be adjacent to be complementary.

In this figure, $\angle A B D$ and $\angle D B C$ are complementary angles because together they form a 90° angle.

In this figure, $\angle E$ and $\angle G$ are complementary angles because $60^{\circ}+30^{\circ}=90^{\circ} ; \angle E$ is the complement of $\angle G$, and $\angle G$ is the complement of $\angle E$.

Supplementary angles are two angles whose sum is 180°. When supplementary angles are adjacent, they form a straight line.

In the top figure, $\angle 5$ and $\angle 6$ are supplementary angles because together they form a line, which measures 180°.

In this trapezoid, $\angle \mathrm{J}$ and $\angle \mathrm{L}$ are supplementary angles. The supplement of $\angle J$ is $\angle L$; the sum of their angle measures is $180^{\circ} . \angle K$ and $\angle M$ are also supplementary angles.
I. Measure each angle.

\qquad

You can extend
a side to make it easier to measure.

Practice
6. Draw a ray to create supplementary angles with the measures given. The first one is given as an example.
15° and 165°

120° and 60°
7. Find the supplementary angle measures.

8. Find the measure of $\angle y$ in each straight angle.
. Find the complementary angle measures. The first one is given as an example.
$40^{\circ} \quad 50^{\circ}$
72° \qquad
30° \qquad 80° \qquad 16° \qquad
53° \qquad

When writing a
5. Find the measure of $\angle x$ in each right angle.

$\mathrm{m} \angle x=$ \qquad

$\mathrm{m} \angle x=$ \qquad
degree measure for an
4 angle, $m \angle x$ means "the
4 angle, $m \angle x$ means the
measure of angle x."

9. Find each pair of supplementary angles in the trapezoid.

Review

I. Evaluate the expression. Lesson 20

$$
200-11 \cdot 12+6^{2} \div 4+(14-9)
$$

2. Evaluate the expression $a+b^{2}-3$ when $a=2.5$ and $b=4$.

Lesson 35
Angle measures are listed below. Circle complementary angle measures in green and supplementary angle measures in red. The pairs of angles can be horizontal, vertical, or diagonal. An example is given.

\rightarrow Hint: Circle 5 pairs of complementary angles and 5 pairs of supplementary angles.

3. Reflect the triangle over the y-axis. Then translate it 3 units up. Lesson 36

4. Classify each angle by its degree measure. Write A for acute, R for right, O for obtuse, and S for straight. Lesson 37
90° \qquad 106° \qquad 180° \qquad 56° \qquad

National Part PUZZLES

D There is no video or review for this lesson. \square Complete the three puzzles.
Arches National Park is located in southeastern Utah, USA. There are more than 2,000 arches in the park. The exact number changes as new arches are discovered and others fall.

1 FOUR FAMILIES visited Arches National Park, and each family hiked a different trail. Find out which family hiked which trail and the distance they hiked by solving the logic puzzle on the right. Note that these hike distances are actual round-trip distances.
\square The Taylor family did not hike to Tower Arch.
\square The Wang family hiked the farthest.
\square The Garcia family hiked farther than the Taylor family.
\square The Hansen family includes a toddler, so they hiked less than one mile.
\square The Park Avenue trail is one mile each way.The Tower Arch trail is shorter than the Delicate Arch trail but longer than the Park Avenue trail.

2 FIND THE NUMERIC VALUE of each animal found in Arches National Park. Note that this puzzle may require some guess and check. Use what you know and keep trying different combinations of numbers!

3 THE MOHAMED FAMILY is fortunate to live within driving distance of Arches National Park. They have set aside three Saturdays in June for hiking in the park, and their goal is to hike 15 miles that month. Using the numbers 1-4 and 6-9 exactly once, complete the puzzle to find four combinations of three hike lengths that would total 15 miles. In other words, each line of numbers should add up to 15 . The center number is given for you.
You will know you are correct if your solutions make the following equation true.

[^0]
\square Watch the video lesson and/or read the mini lesson.

Warm-Up

Complete the following problems.

$$
0.05+0.4=
$$

\qquad

$$
0.05 \bullet 0.4=
$$

\qquad

$$
0.05 \div 0.4=
$$

\qquad

Solving Equations with Decimals

Solving equations with decimals is similar to solving equations with whole numbers. Just remember a few decimal rules:

Add/Subtract
line up the decimal points

Multiply multiply, then count decimal places

Divide
move the decimal point in the divisor \& dividend

$$
0 . 2 \longdiv { 0 . 0 3 } \rightarrow 2 \longdiv { 0 . 1 5 }
$$

$$
\begin{array}{rr}
0.03 & 0.03 \\
+0.20 & \times 0.2 \\
\hline 0.23 & 0.006 \\
\hline
\end{array}
$$

Examples of Equations with Decimals

$$
x+4.2=5
$$

$$
5.6+x=8.72
$$

$$
x+4.22=\stackrel{4}{81} \cdot 0
$$

$$
-4.8-4.2
$$

$$
5.6+x=8.72
$$

$$
x=0.8
$$

$$
\begin{array}{r}
-8.6-\frac{5.60}{x}=3.12
\end{array}
$$

$$
\begin{aligned}
& 3.2 x=4 \\
& \frac{3.2 x}{3.2}=\frac{4}{3.2} \\
& 5 x=4.5 \\
& \frac{x}{1.2}=8 \\
& \frac{5 x}{5}=\frac{4.5}{5} \\
& 1.2 \cdot \frac{x}{1.2}=8 \cdot 1.2 \\
& x=1.25 \\
& x=0.9 \\
& \text { scratch work } \\
& x=9.6
\end{aligned}
$$

Solving Equations with Fractions

When a coefficient is a fraction, multiply the coefficient by its reciprocal to isolate the variable. Then multiply the other side by the same number.
Example:

$$
\frac{2}{3} x=4 \quad \text { Multiply by the reciprocal of the coefficient. }
$$

$\frac{2}{2} \frac{2}{3} x=\frac{2^{2}}{1} \cdot \frac{3}{2}$
Cancel first; then multiply.
A number multiplied by its reciprocal is 1 .

$$
\begin{aligned}
& x=\frac{6}{1} \quad \text { Simplify the fraction. } \\
& x=6
\end{aligned}
$$

Additional Examples of Equations with Fractions

$$
\begin{array}{rlrl}
x+\frac{1}{4} & =\frac{2}{3} & x-6=\frac{3}{5} & \frac{3}{4} x=\frac{5}{8} \\
x+\frac{1}{4} & =\frac{2}{3} & x+6=\frac{3}{5} & x=\frac{3}{6} \\
x & =\frac{2}{3}-\frac{1}{4} & x=\frac{3}{5}+6 & \\
x & =\frac{8}{12}-\frac{3}{12} & x=6 \frac{3}{5} & \\
x & =\frac{5}{12} &
\end{array}
$$

Review

I. Nico had 54 baseball trading cards. He was given c trading cards for Christmas. Write an expression that shows how many trading cards Nico has now. Lesson 34
2. On the first line, substitute the given values in place of the variables. On the second line, evaluate the expression. Lesson 35
$a^{2}-2 b+7 \quad a=5, b=11$ \qquad
3. Factor each expression. Lesson 48
$8+12=$
$10+75=$
4. Lola made n cupcakes for a bake sale. She sold 19 cupcakes and has 16 left to sell. Write and solve an equation to find the number of cupcakes Lola made. Lesson 49
5. Solve each equation. Lesson 50
$9 a=81$
$11 b=132$
$65=5 c$
$a=$ \qquad $b=$ \qquad
$c=$ \qquad

Himalayas and thinnest in the ocean. Solve the equations on the rocks to find the average thickness of the crust below land and below the ocean.

The crust below land is about \qquad km (\qquad mi) thick.
largest value of m smallest value of m

The crust below the ocean is about \qquad km (\qquad mi) thick. largest value of s smallest value of s .

\qquad

Poetry can be a beautiful representation of many parts of life. Robert Frost wrote a poem titled "The Road Not Taken" in 1915. Follow the roads and complete the problems to review the concepts taught in Unit 2. Then enjoy the poem at the end!

PERCENTS

_essons 44, 52-55
Find the percent of each number.
What is 20% of 40 ? \qquad
What is 30% of 7.5 ? \qquad
What is 125% of 8 ? \qquad What is 30% of 7.5 ?

What is 60% of $\frac{3}{4}$? \qquad

Find each whole.
30% of what number is 15 ? \qquad
55 is 20% of what number? \qquad

45 is what percent of $150 ?$

Find each percent.

What percent of 82 is 41 ? \qquad
\qquad
\qquad

SOLVING EQUATIONS Lessons 43, 49-51

Solve each equation.

$$
a-2.5=4.25 \quad 22=b+5 \quad 3 c=36 \quad \frac{2}{5} d=8
$$

EXPRESSIONS

Evaluate each expression using the values given.

$$
a=3, b=\frac{3}{4}, c=4.2
$$

$$
a^{2}-4 b+c \quad 3 c+a-8 b
$$

\qquad

DISTRIBUTIVE PROPERTY \& FACTORING Lessons 47 \& 48

Write the second factor in expanded form, and then use the distributive property to multiply.

3 - $821=$
$7 \cdot 1,028=$

Factor each expression.
$9+63=$
$24+18=$

COMPLEX FRACTIONS
Lesson 56
Simplify the complex fractions.
$\frac{1 \frac{3}{4}}{\frac{1}{2}}=\quad \frac{\frac{2}{3}}{4}=\quad \frac{\frac{1}{4}}{\frac{5}{8}}=$

COMPLEMENTARY \&

SUPPLEMENTARY ANGLES

Find the complementary angle measures.
63° \qquad 18° \qquad

Find the supplementary angle measures.

COMBINING LIKE TERMS Lessons 33 \& 46

Complete each problem.
$\sqrt{144}-\sqrt[3]{64}=$ \qquad $\sqrt[3]{125}+\sqrt{100}=$ \qquad $\sqrt{121} \cdot \sqrt[3]{8}=$ \qquad

Cross out the statements that are not true.
$3 a+8 b+2 a=5 a+8 b$
$4 x-y=3 x y$
$2 r+4 r^{2}=6 r$
$5 m+4 n-n=5 m+3 n$
20° \qquad 145° \qquad -

SYMMETRY, TRIANGLES \& SEMICIRCLES Lessons 36, 39 \& 42
Write the missing angle measures on each triangle. Then circle the triangle(s) that have rotational symmetry.

SYMMETRY \& QUADRILATERALS Lessons 36 \& 40
Draw all lines of symmetry on the shapes below. Then write the missing angle measures.

Find the area and perimeter of the semicircle.

ANGLES Lesson 37

Classify each angle as acute (A), right (\mathbf{R}), obtuse (\mathbf{O}), or straight (\mathbf{S}).
90°
\qquad
173° \qquad
180°
$A \approx$
$P \approx$ \qquad

TRANSFORMATIONS

Translate each shape according to the information given.

Translate the parallelogram 3 units left and 2 units up. Then reflect it over the x-axis.

Translate the trapezoid 2 units right and 4 units down. Then reflect it over the y-axis.

The circle below is divided evenly. Find the measure of the central angle formed by each colored section.

yellow: \qquad
brown: \qquad
green: \qquad

IDENTIFYING TURNS Lesson 57

Draw each turn starting at the dot according to the information given.
90° turn counterclockwise

Convert between degrees and turns.
$1 \frac{3}{4}$ turns \rightarrow \qquad -
$900^{\circ} \rightarrow$ \qquad

GEOMETRIC FIGURES
Using letters and symbols, write the name of each geometric figure below.

THE ROAD NOT TAKEN By Robert Frost
Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same,

And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and II took the one less traveled by, And that has made all the difference.

[^0]: - Jenny Phillips

