

COURSE BOOK 1 TABLE OF CONTENTS

About the Course iv
Frequently Asked Questions. v
Lesson Topics vi
UNIT 1 OVERVIEW 1
Lesson 1: Writing Decimals, Estimating, and Rounding 2
Lesson 2: Upside Down Division and Prime Factorization 7
Lesson 3: Simplifying Fractions with Prime Factors 13
Lesson 4: Multi-Digit Division 19
Lesson 5: Converting Between Fractions and Decimals. 24
Lesson 6: Adding and Subtracting Integers 29
Lesson 7: Multiplying and Dividing Integers 35
Lesson 8: Multiplying and Dividing Fractions 41
Lesson 9: Complex Fractions 46
Lesson 10: Adding and Subtracting Fractions 51
Lesson 11: Adding and Subtracting Decimals 56
Lesson 12: Multiplying and Dividing Decimals 62
Lesson 13: Positive Exponents. 67
Lesson 14: Negative Exponents 72
Lesson 15: Logic Lesson 1 77
Lesson 16: Properties of Real Numbers 80
Lesson 17: Expanded Notation with Exponents 85
Lesson 18: Scientific Notation 90
Lesson 19: Operations with Numbers in Scientific Notation 95
Lesson 20: Absolute Value and Coordinate Planes 100
Lesson 21: Order of Operations: Part 1 105
Lesson 22: Order of Operations: Part 2 110
Lesson 23: Simplifying Expressions 115
Lesson 24: Evaluating Expressions 122
Lesson 25: Writing Expressions 126
Lesson 26: Writing Equations 132
Lesson 27: Solving One-Step Equations 138
Lesson 28: Unit 1 Review 144
Lesson 29: Unit 1 Assessment 149
Lesson 30: Enrichment: Sequences and Series 154
Reference Chart 159

About the Course

SUPPLIES NEEDED

- Simply Good and Beautiful Math 7 Course Books 1, 2, 3, and 4
- Simply Good and Beautiful Math 7 Answers and Solutions
- Simply Good and Beautiful Math Scratch Pad or other scratch paper
- Device to access videos
- Scientific calculator
- 2 standard dice
- Colored pencils and/or crayons
- Highlighter and /or marker
- Tape or glue
- Ruler
- Protractor
- Compass
- Scissors
- String
- Coin
- Paper clip

COURSE OVERVIEW

Math 7 consists of Course Books 1, 2, 3, and 4. There are 120 total lessons divided into four units. Each unit ends with a unit review, assessment, and enrichment activity. The course is designed to be independently completed by the student, but the parent/ teacher can choose to be as involved in the lessons as he or she would like.

GETTING STARTED

Simply open the first course book. The student may choose to watch the video lesson or just read the lesson overview if he or she feels confident in the lesson topic. Please note that videos may contain material not included in the written lesson overview. After completing the video and/or lesson overview, the student should complete the lesson practice and review sections.

The parent/teacher should check the student's work daily and provide immediate help and feedback. Students who struggle with the lesson practice should be encouraged to review the lesson overview or video for help. Note: If printing at home, print pages at actual size.

LESSON DETAILS

Most lessons consist of a warm-up, video lesson, lesson overview, practice, and review.
WARM-UP: An activity that applies to the lesson topic or that reviews mental math skills.
VIDEO LESSON: Detailed teaching and interactive, guided practice of the lesson topic. Videos are about 12-15 minutes in length.

The Good and Beautiful Homeschool app can be used to access and watch the lesson videos. Use the QR code below to access app download information.

Alternatively, the videos can be accessed at goodandbeautiful.com/Math7.

LESSON OVERVIEW: A concise written lesson on the topic.
PRACTICE: Problems dedicated to the lesson topic.
REVIEW: Daily review of topics from previous lessons.

A Reference Chart can be found at the back of each book.

Frequently Asked Questions

How many lessons should my student do each week?

- There are 120 lessons in the course. If the student completes four lessons per week, he or she will complete the course in a standard school year with typical breaks for vacation or sickness.

How long do lessons take?

- The average time to complete a lesson is $50-60$ minutes. This includes time to watch the video and complete the course book sections.

What if my student does not do well on an assessment?

Each assessment question has a lesson number indicating where the content was first introduced. If your student misses an assessment question, he or she is encouraged to do one or more of the following:

- Reread the corresponding lesson overview.
- Rewatch the corresponding video.
- Complete the extra practice worksheet for the corresponding lesson (available for purchase).
- Rework the problem given the answer. It can be helpful to know the answer when reworking a problem so mistakes can be found.
Do you include any specific doctrine?
- No, the goal of our curriculum is not to teach doctrines specific to any particular Christian denomination but to teach general principles, such as honesty, hard work, and kindness. All Bible references in our curriculum are from the King James Version.

Does my student have to watch the videos?

- The videos contain the bulk of the teaching and are highly recommended. However, if your student feels confident in the topic being taught, he or she can skip the video and read the lesson overview instead. A student who
struggles with the lesson practice should be encouraged to go back and watch the video.
- Some families prefer to have the parent/ teacher facilitate the lesson using the lesson overview rather than have the student watch the video lesson independently.

Is Math 7 completed independently by

 the student?- Yes, Math 7 is designed for your student to complete independently, though at times the student may need parent/ teacher assistance to understand a concept. The parent/teacher will need to check the student's work and should do so on a daily basis when possible, providing immediate feedback.
Is Math 7 a spiral or mastery program?
- Math 7 is a spiral course, constantly reviewing concepts your student has learned to ensure understanding and retention of information.

What if there isn't room to complete the work?

- Math 7 is designed to give students room to work in their course book. At times, additional paper may be needed. Students should always keep scratch paper on hand while completing the lessons. The Simply Good and Beautiful Math Scratch Pad is available for purchase.
Is a calculator used in Math 7 ?
- This course is designed to be completed with a scientific calculator on hand for specific problems. Problems that allow the use of a calculator are marked with the calculator icon shown to the left. Any brand of scientific calculator is acceptable. Please note that calculators may vary, and your student is encouraged to read the manual for the specific calculator to understand how it functions.

Lesson Topics

UNIT 11 Writing Decimals, Estimating, and Rounding
2 Upside Down Division and Prime Factorization
3 Simplifying Fractions with Prime Factors
4 Multi-Digit Division5 Converting Between Fractions and Decimals6 Adding and Subtracting Integers
7 Multiplying and Dividing Integers
8 Multiplying and Dividing Fractions
9 Complex Fractions
10 Adding and Subtracting Fractions
11 Adding and Subtracting Decimals
12 Multiplying and Dividing Decimals
13 Positive Exponents
14 Negative Exponents
15 Logic Lesson 1
16 Properties of Real Numbers
1718 Scientific Notation19 Operations with Numbers in Scientific Notation
20 Absolute Value and Coordinate Planes
21 Order of Operations: Part 1Order of Operations: Part 2
23 Simplifying Expressions
2425Writing Expressions
26 Writing Equations
27 Solving One-Step Equations
28 Unit 1 Review
29 Unit 1 Assessment

UNIT 2

31 Set Notation
32 Evaluating Square Roots
33 Solving Two-Step Equations
34 Square Roots and Cube Roots
35 Multi-Step Equations with Negative Coefficients
36 Solving Equations Review
37 Solving for a Variable in Terms of Other Variables
38 Solving and Graphing One-Step Inequalities
39 Solving and Graphing Multi-Step Inequalities
40 Fractions of a Group
41 Ratios and Proportions
42 Solving Ratio Problems: Part 1
43 Solving Ratio Problems: Part 2
44 Rounding Fractions and Mixed Numbers
45 Logic Lesson 2
46 Percentages
47 Percent Increase
48 Percent Decrease
49 Simple Interest
50 Compound Interest
51 Identifying Unit Rates
Proportions Within Similar Triangles
53 Metric and US Customary Units
54 Unit Conversions
55 Converting Square Units
56 Operations with Mixed Measures
57 Mixed Review
58 Unit 2 Review
59 Unit 2 Assessment
60 Enrichment: Graph Theory

UNIT 3

61 Scale Drawings
62 Direct Proportions
63 Inverse Proportions
64 Graphs of Direct Proportions
65 Graphing Using a T-Chart
66 Slope of a Line
67 Slope-Intercept Form
68 Graphing Linear Equations
69 Functions
70 Graphing Functions
71 Triangles
72 Transformations
73 Constructing Angles
74 Constructing Triangles
75 Logic Lesson 3
76 Polygon Diagonals and Angles
77 Finding Polygon Angle Measures
78 Angle Relationships
79 Parallel Lines and Transversals
80 Missing Angles in a Circle
81 Pythagorean Theorem
82 Perimeter of Polygons
83 Area of Polygons
84 Area and Circumference of Circles
85 Composite Figures
86 Inscribed Shapes
87 Mixed Review
88 Unit 3 Review
89 Unit 3 Assessment
90 Enrichment: Circumference and Diameter

UNIT 4

91 Scale Factor with Area
92 Arcs and Sectors
93 Geometric Solids
94 Surface Area of Prisms and Pyramids
95 Surface Area of Cylinders, Cones, and Spheres
96 Surface Area of Composite Solids
97 Volume of Prisms and Cylinders
98 Volume of Other Geometric Solids
99 Polynomials
100 Multiplying Polynomials
101 Simplifying Rational Expressions
102 Factoring Polynomials
103 Populations and Sampling Methods
104 Data Displays: Part 1
105 Logic Lesson 4
106 Measures of Central Tendency
107 Interpreting Measures of Central Tendency
108 Data Displays: Part 2
109 Scatter Plots
110 Interpreting Graphs
111 Simple Probability
112 Types of Events
113 Sample Space
114 Compound Probability
115 Probability Simulation
116 Unit 4 Review
117 Course Review
118 Course Assessment
119 Enrichment: Patterns with Divisibility 120 Fun with Graphing

```
\bullet
-
- (0) (0)0
- Adding and subtracting decimals
- Adding and subtracting fractions
- Adding and subtracting integers
- Applying reasoning to determine validity of answers
- Combining like terms
- Complex fractions
- Converting between fractions and decimals
- Converting between standard form and scientific notation
- Coordinate planes
- Equations with negative numbers
- Estimating and rounding
- Evaluating expressions
- Evaluating expressions with positive exponents
- Evaluating integers raised to negative exponents
- Expanded notation with exponents
- Expressions, constants, and coefficients
- Greatest common factor
- Identifying and writing equations
- Identifying solutions to equations
- Least common multiple
- Multiplying and dividing decimals
- Multiplying and dividing fractions
- Multiplying and dividing integers
- Multiplying and dividing numbers in scientific notation
- Operations with signed fractions and decimals
- Opposites and absolute value
- Prime factorization
- Prime factorization to simplify fractions
- Properties of real numbers
- Simplifying division problems
- Simplifying expressions using the order of operations
- Solving and checking one-step equations
- Terminating and repeating decimals
- Upside down division
- Using absolute value to find horizontal and vertical distances on coordinate planes
- Using calculators
- Writing expressions
- Writing large numbers with digits and words
- Zero as an exponent and base



Multiply or divide.
a. \(45 \div 15\)
b. \(16 \bullet 4\)
c. \(56 \div 8\)

\section*{* LESSON}

Use the app to watch the video lesson. Complete problems when instructed during the video in the Video Notes section. Optionally, read the Lesson Overview in place of the video or after the video if more instruction is needed.

\(\qquad\) number of \(\qquad\) after the decimal point

Examples of terminating decimals:
* Repeating decimal: a decimal number with \(\qquad\) or \(\qquad\) digits after the
\(\qquad\) that repeat forever

Examples of repeating decimals:

Estimate: \(\qquad\)
Exact decimal answer: \(4.8 \bullet 0.513=\) \(\qquad\)
Rounded answer: \(4.8 \bullet 0.513 \approx\) \(\qquad\)
Is the answer reasonable based on the estimate? \(\qquad\)

\section*{LESSON OVERVIEW}

\section*{Terminating and Repeating Decimals}

Numbers used in real-world situations are often decimal numbers. There are different types of decimal numbers. Two kinds of decimal numbers are terminating decimals and repeating decimals.

\section*{Terminating Decimal}

A terminating decimal is a decimal number with a limited number of digits after the decimal point.
Examples:
0.25, 6.1283, 4.8

\section*{Repeating Decimal}

A repeating decimal is a decimal number with one or more digits after the decimal point that repeat forever.
Examples:
0.333..., 5.1919..., 0.111...

Repeating decimals are written with a bar over the repeating digit(s). \(0.333 \ldots\) can be written as \(0 . \overline{3}\) with a bar over the repeating 3 .

The following division has been completed using a calculator.
Z KEY INFORMATION
Calculators often round the last digit of a repeating decimal.
\(7 \div 9=0.7777777778 \ldots\)
The digit 7 repeats, so \(7 \div 9=0 . \overline{7}\)
\(1 \div 12=0.08333333333 \ldots\)
The digit 3 repeats, so \(1 \div 12=0.08 \overline{3}\)

Look for a pattern in the digits after the decimal point.
\(27 \div 53=0.509433962264150943396226415 \ldots\)
The digits 5094339622641 repeat, so \(27 \div 53=0 . \overline{5094339622641}\)

\section*{Estimating and Rounding}

It can be useful to estimate answers before performing calculations. This helps determine if a mistake was made during calculation and if the answer is reasonable.

Example 1: Estimate the answer to \(13 \div 7\). Then divide and round the quotient to the nearest ten thousandth.
14 is a whole number close to 13 that is divisible by \(7 . \rightarrow\) Estimate:
Use a calculator to divide: \(13 \div 7=1.857142857142 \ldots \quad 14 \div 7=2\)
Round to the nearest ten thousandth: \(13 \div 7 \approx 1.8571\)
This is close to the estimated answer of 2 .

KEY INFORMATION
The symbol \(\approx\) means "approximately equal to."

Example 2: Estimate the answer to \(3.81 \bullet 9.25\). Then multiply and round the product to the nearest thousandth.
3.81 is close to 4 , and 9.25 is close to \(9 . \longrightarrow\) Estimate:

These are whole numbers that are easy to multiply. \(\quad 4 \bullet 9=36\)
Use a calculator to multiply: \(3.81 \bullet 9.25=35.2425\)
Round to the nearest thousandth: \(3.81 \bullet 9.25 \approx 35.243\)
This is close to the estimated answer of 36 .

Example 3: Estimate \(6.98 \bullet 4.43\). Then multiply and round the product to the nearest tenth.
6.98 is close to 7 , and 4.43 can be rounded down to \(4 . \rightarrow\) Estimate:

Use a calculator to multiply: \(6.98 \bullet 4.43=30.9214\)
\(7 \bullet 4=28\)
Round to the nearest tenth: \(6.98 \bullet 4.43 \approx 30.9\)
This is close to the estimated answer of 28 .

Example 4: Divide and round the quotient to the nearest hundredth.
a. \(\mathbf{0 . 1 2 5} \div 0.8\)

Use a calculator to divide: \(0.125 \div 0.8=0.15625\)
Round to the nearest hundredth: \(0.125 \div 0.8 \approx 0.16\)
b. \(\mathbf{3 7 \div 2 2}\)

Use a calculator to divide: \(37 \div 22=1.68181818181 \ldots\)
Round to the nearest hundredth: \(37 \div 22 \approx 1.68\)


\section*{PRACTICE}

A calculator may be used for problems with this symbol.
1. Estimate each quotient by using nearby numbers that divide evenly.
a. \(19 \div 5\)
b. \(47 \div 15\)
\begin{tabular}{|c|c|c|}
\hline Problem & \begin{tabular}{c} 
Answer \\
Terminates
\end{tabular} & \begin{tabular}{c} 
Answer \\
Repeats
\end{tabular} \\
\hline \(8.52 \bullet 4.09\) & & \\
\hline \(103 \div 3\) & & \\
\hline \(39 \div 3\) & & \\
\hline \(68.6868 \bullet 4.44\) & & \\
\hline \(56 \div 3\) & & \\
\hline
\end{tabular}

Determine whether the answer to each problem in the table is a terminating or a repeating decimal and place a check mark in the appropriate column.
3. Round each answer to the nearest ten thousandth.
a. \(33 \div 13\)
b. \(4.56 \cdot 2.6398\)
c. \(8.623 \bullet 5.01\)
\(\qquad\)
\(\qquad\)
4. Write each answer as an exact decimal using a bar.
a. \(98 \div 15\)
b. \(65 \div 12\)
c. \(134 \div 11\)
\(\qquad\)
\(\qquad\)
5. a. Estimate the quotient of \(34 \div 5\) by rounding 34 to the closest multiple of 5 .
b. Will the quotient be greater than or less than the estimate?
Circle one: greater than / less than
6. Five friends evenly split a dinner bill that totaled \(\$ 34\). How much did each person pay?
\$ \(\qquad\)
\(\qquad\) cars
7. Tammy is cutting a piece of poster board that is 34 cm wide into five equal strips. How wide will each strip be?
\(\qquad\) cm
8. A total of 34 students are going on a field trip. Each car can hold five students. How many cars are needed?
9. Match each problem with its exact decimal answer by drawing the same pattern and/or using the same color. An example is given.
\begin{tabular}{|c|c|c|}
\hline \(65 \div 6\) & \(11 . \overline{5}\) & 12.6 \\
\hline \(63 \div 5\) & \(115 \div 10\) & \(38 \div 3\) \\
\hline \(10.8 \overline{3}\) & \(1266 \div 100\) & \(10 . \overline{83}\) \\
\hline \(11 . \overline{56}\) & 12.66 & 12.7 \\
\hline \(254 \div 20\) & 11.5 & \(1145 \div 99\) \\
\hline \(104 \div 9\) & \(12 . \overline{6}\) & \(1073 \div 99\) \\
\hline
\end{tabular}

0


\section*{REVIEW}

\section*{Math Facts Review}

In each triangle the bottom two numbers multiplied together equal the top number. Fill in the missing number on each triangle. Then write the fact family below each triangle. An example is given. If a box has a letter next to it, write the letter on the line above the corresponding answer at the bottom of the page to solve the riddle.

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\times\) & & \(=\) & \\
\hline & \(\times\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline & \(\div\) & & \(=\) & \\
\hline
\end{tabular}

Why didn't the dime roll down the mountain with the nickel?

5. Roll two standard dice and add the values. Find ONE square containing the sum (orange numbers). Complete the problem in that square, and then color in the square. Continue until you have five squares in a row colored. The five squares in a row can be connected horizontally, vertically, or diagonally.
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & 2 & 7 & 4 & 5 \\
\(-20 \div(-4)\) & \(-3 \cdot 30\) & \(-150 \div 15\) & \(48 \div 8 \div(-3)\) & \(90 \bullet(-7)\) \\
\hline 7 & 8 & 9 & 10 & 11 \\
\(-1 \bullet 76\) & \(-64 \div 8\) & \(-84 \div(-7)\) & \(-9 \bullet(-12)\) & \(8 \bullet 7 \bullet(-1)\) \\
\hline 6 & 2 & 3 & 4 & 5 \\
\(-5 \bullet 0\) & \(10 \bullet(-1)\) & \(-40 \div(-4)\) & \(-72 \div 9 \div 2\) & \(99 \div(-9)\) \\
\hline 7 & 8 & 9 & 10 & 11 \\
\(32 \div(-4)\) & \(42 \div 7\) & \(12 \bullet 11\) & \(-18 \div(-18)\) & \(11 \bullet(-11)\) \\
\hline 12 & 6 & 3 & 4 & 5 \\
\(54 \div(-6)\) & \(-7 \bullet 7\) & \(25 \bullet 6\) & \(0 \bullet(-23)\) & \(-66 \div 6\) \\
\hline
\end{tabular}

3. Add. Write answers as mixed numbers.
a. \(3 \frac{1}{3}+5 \frac{5}{18}\)
b. \(-3 \frac{1}{3}+\left(-5 \frac{5}{18}\right)\)
\(\qquad\)
\(\qquad\)

REMEMBER:


Change mixed numbers to improper fractions before adding or subtracting

\section*{Aunt Laurie's Banana Chocolate Chip Cookies}

Cream together in a large mixing bowl:
\(\qquad\)
a.
\(\qquad\) cup(s) butter
b.
\(\qquad\) egg(s) C.

Beat into mixture:
\(\qquad\) cup(s) mashed banana
\(\square\)
\(\qquad\) tablespoon(s) baking powder
\(\qquad\) e. teaspoon(s) salt

Mix in:
\(\qquad\) cup(s) flour
g.
\(\qquad\)

Stir in:
\(\qquad\) cup(s) chocolate chips h.

Place balls of dough on a baking sheet. Bake at \(350^{\circ} \mathrm{F}\) for 8-10 minutes.
4. Add.
a. \(\frac{21}{25}+\left(-\frac{3}{5}\right)\)
b. \(\frac{3}{5}+\left(-\frac{21}{25}\right)\)

5. Add or subtract. Write answers in the blanks to complete the recipe for banana chocolate chip cookies.
a. \(10 \frac{1}{6}-8 \frac{2}{3}\) \(\qquad\)
b. \(-3 \frac{8}{9}+4 \frac{24}{27}\) \(\qquad\)
c. \(\frac{10}{4}+\frac{8}{16}\) \(\qquad\)
d. \(6 \frac{2}{5}+\left(-4 \frac{9}{10}\right)\) \(\qquad\)
e. \(\frac{1}{6}-\left(-1 \frac{1}{3}\right)\) \(\qquad\)
f. \(-\frac{3}{10}+\frac{11}{20}\) \(\qquad\)
g. \(7 \frac{5}{6}-\frac{49}{12}\) \(\qquad\)
h. \(-\frac{3}{7}+2 \frac{3}{7}\)


\section*{LESSON}

Use the app to watch the video lesson. Complete problems when instructed during the video in the Video Notes section. Optionally, read the Lesson Overview in place of the video or after the video if more instruction is needed.

\section*{VIDEO NOTES}
\[
4^{3}=
\]

When multiplying an even amount of negative numbers, the product will be \(\qquad\) .

When multiplying an odd amount of negative numbers, the product will be \(\qquad\) .
\[
(-2.5)^{3}=
\]
\(\qquad\) - \(\qquad\) - \(\qquad\) \(=\) \(\qquad\)

\section*{Exponents and Zero}
* Any nonzero base raised to the power of \(\qquad\) is \(\qquad\) .
* Zero to any nonzero power is \(\qquad\) -.
* Zero to the power of zero is \(\qquad\) .

\section*{LESSON OVERVIEW}

The expression \(4^{3}\) is called a power and is read as " 4 to the third power." It has an exponent and a base. The base is the number that is multiplied
 by itself when using an exponent. The exponent is a number showing how many times to multiply the base number by itself. Note: The word "power" can be used to refer to the whole expression (e.g., a power of 4), or it can refer to the exponent itself (e.g., 4 to the power of 3 ).
\(4^{3}\) can be written in factored form as \(4 \bullet 4 \bullet 4\). It can also be evaluated. \(4^{3}=4 \bullet 4 \bullet 4=64\)
Exponents can be used to write prime factorizations. Here is the prime factorization of 56 in exponential form. \(56=2 \bullet 2 \bullet 2 \bullet 7=2^{3} \bullet 7\)
A prime factorization with exponents can be written in factored form and evaluated.
Here is a prime factorization evaluated. \(2^{4} \bullet 3=2 \bullet 2 \bullet 2 \bullet 2 \bullet 3=48\)


A number raised to the second power is referred to as squared. A number raised to the third power is referred to as cubed.

\section*{Fractional and Decimal Bases}

The base can be any number or expression. To evaluate a power, write the expression in factored form and multiply.

Example 1: \(\left(\frac{1}{2}\right)^{4}\)
Example 2: \(\left(\frac{9}{5}\right)^{2}\)
Example 3: \(\left(1 \frac{2}{3}\right)^{3}\)
\(=\frac{1}{2} \bullet \frac{1}{2} \bullet \frac{1}{2} \cdot \frac{1}{2}\)
\(=\frac{9}{5} \bullet \frac{9}{5}\)
\(=\left(\frac{5}{3}\right)^{3}\)
\(=\frac{1}{16}\)
\(=\frac{81}{25}=3 \frac{6}{25}\)
\(=\frac{5}{3} \cdot \frac{5}{3} \cdot \frac{5}{3}\)
\(=\frac{125}{27}=4 \frac{17}{27}\)
Example 4: \(\left.\quad \frac{5^{2}}{11} \longleftarrow \begin{array}{c}\text { Only the } \\ \text { numerator is } \\ \text { squared. }\end{array}\right)\)
Example 5:

\(=\frac{5 \cdot 5}{11}\)
\(=\frac{7}{3 \bullet 3 \bullet 3}\)
\(=\frac{25}{11}=2 \frac{3}{11}\)

Example 6: \(6.5^{3}\)
\[
=6.5 \bullet 6.5 \bullet 6.5
\]
\[
=274.625
\]
2. Rewrite each power as a fraction with a positive exponent. Do not evaluate the power.
a. \(5^{-13}\) \(\qquad\) b. \(8^{-9}\)
c. \(11^{-10}\)
d. \((-6)^{-3}\) \(\qquad\)
e. \(-12^{-10}\) \(\qquad\)
f. \((-7)^{-4}\) \(\qquad\)
3. Evaluate. Write each answer as a simplified fraction.
a. \((-2)^{-6}\) \(\qquad\) b. \(12^{-2}\) \(\qquad\)
c. \(-4^{-4}\) \(\qquad\)
d. \((-10)^{-3}\) \(\qquad\)
4. Rewrite each power of 10 as a decimal number.
a. \(10^{-1}\) \(\qquad\)
b. \(10^{-2}\) \(\qquad\)
c. \(10^{-8}\) \(\qquad\)

6. Preposterous Preferences

Read the two options and decide which one you would prefer. Rewrite the value in that box in the form specified. For extra practice, complete both problems in each part.


Vanilla pudding: \(\qquad\) OR Root beer: \(\qquad\)
\begin{tabular}{l|l} 
b. Sleep in a bed of . . . & \\
\begin{tabular}{l} 
Sand
\end{tabular} & Harmless snakes \\
\(5^{-3} \rightarrow\) simplified fraction & \(2^{-5} \rightarrow\) simplified fraction
\end{tabular}

Sand: \(\qquad\) OR Harmless snakes: \(\qquad\)

Potato: \(\qquad\) OR Onion: \(\qquad\)
\[
\begin{aligned}
& \text { d. Have four } \ldots \\
& \qquad \begin{array}{l}
\text { Arms } \\
\qquad \begin{array}{l}
\text { Legs }
\end{array} \\
\hline \text { power of } 3
\end{array} \frac{1}{36} \rightarrow \text { power of } 6
\end{aligned}
\]

Arms: \(\qquad\) OR Legs: \(\qquad\)
b. 0.001 \(\qquad\)
c. 0.0000000001 \(\qquad\)
5. Rewrite each decimal number as a power of 10 .
a. 0.00001 \(\qquad\)

Past: \(\qquad\) OR Future: \(\qquad\)

\section*{f. Have a}

Nose like a platypus
\[
\frac{1}{16} \rightarrow \text { power of } 2
\]

Neck like a giraffe \(\frac{1}{81} \rightarrow\) power of 3

Nose like a platypus: \(\qquad\)
OR Neck like a giraffe: \(\qquad\)


6. Multiply or divide. Perform operations inside parentheses first.
a. \((2 \bullet 5) \bullet 6\) \(\qquad\) b. \(2 \bullet(5 \bullet 6)\) \(\qquad\) C. \((24 \div 12) \div 2\) \(\qquad\) d. \(24 \div(12 \div 2)\)
7. For Parts A, B, and C, find the number that makes a true statement. For Parts D, E, and F, simplify the expression. Then locate all the boxes containing each answer on the grid and shade in the sections in that box according to the design listed next to the problem.
a. \(11 \cdot 8=\) \(\qquad\) - 11
b. \(>\)
\(\frac{1}{23}\) \(\qquad\) \(=1\)

\(28+\) \(\qquad\) \(=0\)
d. \(\searrow 7(40-1)\)
e. \(\triangle \cdot(4 \bullet 3)\)
f. \(>3(80+1)\)
a.
b. \(\qquad\) c. \(\qquad\)
d. \(\qquad\) e. \(\qquad\) f. \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 84 & 273 & 8 & 23 & 23 & 273 & 8 & 243 \\
\hline 273 & 84 & 243 & 8 & 273 & 84 & 243 & 8 \\
\hline 243 & 8 & 273 & 84 & 243 & 8 & 273 & 84 \\
\hline-28 & 243 & 84 & 273 & 8 & 243 & 84 & -28 \\
\hline-28 & 273 & 8 & 243 & 84 & 273 & 8 & -28 \\
\hline 273 & 84 & 243 & 8 & 273 & 84 & 243 & 8 \\
\hline 243 & 8 & 273 & 84 & 243 & 8 & 273 & 84 \\
\hline 8 & 243 & 84 & 23 & 23 & 243 & 84 & 273 \\
\hline
\end{tabular}

\section*{REVIEW}
1. Evaluate each power. \(\mathrm{L} 13, \mathrm{~L} 14\)
a. \(11^{-2}\) \(\qquad\) b. \(8^{-2}\) c. \(\left(\frac{5}{9}\right)^{2}-\) d. \(\left(\frac{3}{4}\right)^{4}-\)
3. Multiply or divide. L12
a. \(15.9 \bullet(-6.1)\) \(\qquad\)
b. \(-20 \div(-3.6)\) \(\qquad\)
2. Add or subtract. L10
a. \(2 \frac{3}{16}-7 \frac{5}{6}\) \(\qquad\) b. \(9 \frac{1}{27}+\left(-8 \frac{2}{9}\right)\)
\(\qquad\)

d. 50.74

Expanded form: \(\qquad\)
Expanded notation: \(\qquad\)
Expanded notation with exponents: \(\qquad\)
4.


Look closely at the expanded form, expanded notation, or expanded notation with exponents for each number. Find and highlight the error(s). Then rewrite the part(s) of the expression containing errors correctly on the line.
a. \(50265=50000+2000+60+5\)
b. \(9166.3=9100+60+6+0.3\)

Correction(s): \(\qquad\) Correction(s): \(\qquad\)
c. \(0.97=\left(9 \bullet 10^{1}\right)+\left(7 \bullet 10^{2}\right)\)
d. \(0.15=\left(1 \bullet 10^{0}\right)+\left(5 \bullet 10^{-1}\right)\)

Correction(s): \(\qquad\) Correction(s): \(\qquad\)
e. \(26.039=(2 \bullet 10)+(6 \bullet 1)+(3 \bullet 0.1)+(9 \bullet 0.01)\)

Correction(s): \(\qquad\)
f. \(7.602=(7 \bullet 1)+(6 \bullet 0.1)+(0.01)+(2 \bullet 0.001)\)

Correction(s): \(\qquad\)
g. \(64.78=\left(6 \cdot 10^{2}\right)+\left(4 \bullet 10^{1}\right)+\left(7 \bullet 10^{-1}\right)+\left(8 \cdot 10^{-2}\right)\)

Correction(s): \(\qquad\)
h. \(0.409=\left(4^{-1}\right)+\left(9^{-3}\right)\)

Correction(s): \(\qquad\)

\section*{REVIEW}
1. Multiply or divide.
a. \(7.64 \bullet 10000\)
b. \(8.23 \div 1000\)
\(\qquad\)
\(\qquad\)
2. Use the distributive property to simplify each expression. L16
a. \(-6(7 x-9)\) \(\qquad\)
b. \(18(-2 y-1)\) \(\qquad\)
3. Evaluate each power. L13
a. \((-5)^{6}\) \(\qquad\)
b. \(-12^{4}\)
4. Write the prime factorization of each number using exponents. L2, L13
a. 147
b. 216
\(\qquad\)
\(\qquad\)
\(\qquad\)
3. The approximate populations of three nations in 2020 are given in standard form. Rewrite each number in scientific notation.
a. China: 1,440,000,000 \(\qquad\)
b. United States of America: 331,000,000 \(\qquad\)
c. Sweden: 10,380,000 \(\qquad\)
4. The atomic radius of an iron atom is approximately \(1.4 \times 10^{-10}\) meters. Rewrite this number in standard form.
5. The atomic radius of a hydrogen atom is approximately 0.000000000023 meters. Rewrite this number in scientific notation.


\section*{6. The Flag of South Sudan}

Formally established in 2011, South Sudan is one of the newest countries in the world.

For Parts A and B, determine the value of the missing exponent. For Parts \(\mathrm{C}-\mathrm{H}\), complete the problem given. If the answer appears on the flag, color that section of the flag the color specified in the problem.
a. Yellow : The population of South Sudan in 2020 was about 11,200,000. In scientific notation this number is \(1.12 \times 10^{\text {? }}\).
b. Blue: In 2020 the population of Africa was about 1,300,000,000. In scientific notation this number is \(1.3 \times 10^{?}\).
\(\qquad\)
c. Red: Write \(6.88 \times 10^{-7}\) in standard form.
\(\qquad\)
d. Purple: Write \(6.88 \times 10^{-9}\) in standard form.
e. Green : Write 3,240,000,000 using a combination of numbers and words.
f. White : Write 32,400,000 using a combination of numbers and words.
g. Orange : Write 0.000039 in scientific notation.
\(\qquad\)

Black: Write 0.0000039 in scientific notation.

3. Write the coordinates of the points shown below.

A: \(\qquad\) \(B\) : \(\qquad\) C: \(\qquad\)
D: \(\qquad\) \(E:\) \(\qquad\) F: \(\qquad\)
G: \(\qquad\)
4. Find the absolute value of each number.
a. 5 \(\qquad\)
b. -7 \(\qquad\)
\[
\text { c. }-\frac{5}{9}
\]
d. 12.7 \(\qquad\)
e. 0 \(\qquad\)
5. Using absolute values, find the distance between the following pairs of points.
a. \((1,4)\) and \((7,4)\) \(\qquad\)
b. \((-2,3)\) and \((-2,-7)\) \(\qquad\)
c. \((0,0)\) and \((-5,0)\) \(\qquad\)
6. Plot the pairs of points in Problem 5 using a different color for each pair. Draw a line connecting each pair. Verify that the distance between each pair matches your answers for Problem 5.

7. Write the coordinates of two points that are on the \(x\)-axis and are each a distance of four units from the origin. Plot the points on the coordinate plane.
\(\qquad\) and \(\qquad\)

8. Write the coordinates of a point located in Quadrant II that is a distance of three units from \((0,5)\). Plot the point on the coordinate plane.



\section*{UNIT 1 | LESSON 24}

\section*{Evaluating Expressions}

\section*{WARM-UP}

Evaluate the expressions.
a. \((-8)^{2}-6^{2}\)
b. \(\sqrt[3]{27}\)

\section*{LESSON}

Use the app to watch the video lesson. Complete problems when instructed during the video in the Video Notes section. Optionally, read the Lesson Overview in place of the video or after the video if more instruction is needed.


\section*{VIDEO NOTES}
1. \(\frac{6 x^{2}}{x y-8}\)
\(x=\ldots y=\) \(\qquad\) of \(f+\frac{60}{d}-\sqrt{e}\)
\(d=\) \(\qquad\) \(e=\) \(\qquad\) \(f=\) \(\qquad\)
2. \(=\frac{6(\quad)^{2}}{(\quad)(\quad)-8}\)
3. \(=\frac{6(\quad)}{-8}\)
4. \(=-\)
\[
8(n-\sqrt{p}) \div m
\]
\[
m=
\]
\(\qquad\) \(n=\) \(\qquad\)
\(\qquad\)
5. \(=-\)
6. \(=-\)

2


LESSON 24

\section*{LESSON OVERVIEW}

To evaluate an expression means to find the value of an expression when the variable is replaced by a given number. When evaluating expressions, substitute the value of the variable or variables into the expression. Parentheses may be needed around the substituted value(s) when substituting a negative number or to indicate multiplication. Use the order of operations when evaluating expressions. The number substituted into an expression is referred to as the input, and the resulting value is referred to as the output.

Here are three different expressions evaluated when \(a=-2\). In each expression, \(a\) is replaced with -2 , and then the expression is evaluated. Notice that parentheses are needed around -2 because it is a negative number.
\[
\begin{array}{lll}
3 a+5 & a^{3}-7 & 16+a \div 2 \\
3(-2)+5 & (-2)^{3}-7 & 16+(-2) \div 2 \\
=-6+5 & =-8-7 & =16-1 \\
=-1 & =-15 & =15
\end{array}
\]

The three expressions below have more than one variable. Each expression is evaluated when \(r=8, s=-5\), and \(t=9\). Parentheses are only used for substitutions when needed.
\[
\begin{array}{lll}
2(s-\sqrt{t}) \div r & 10 t-r \bullet s & t(6+s)+\sqrt[3]{r} \\
2(-5-\sqrt{9}) \div 8 & 10(9)-8 \bullet(-5) & 9(6+(-5))+\sqrt[3]{8} \\
=2(-5-3) \div 8 & =90-(-40) & =9(1)+\sqrt[3]{8} \\
=2(-8) \div 8 & =130 & =9(1)+2 \\
=-16 \div 8 & & =9+2 \\
=-2 & & =11
\end{array}
\]

\section*{Example 1:}

Evaluate \(\frac{6 x^{2}}{x y-8}\) when \(x=5\) and \(y=-1\).
\[
\begin{aligned}
& \frac{6(5)^{2}}{(5)(-1)-8} \\
& =\frac{6(25)}{-5-8} \\
& =\frac{150}{-13} \\
& =-11 \frac{7}{13}
\end{aligned}
\]

\section*{Example 2:}

Evaluate \(\frac{6 x^{2}}{x y-8}\) when \(x=\frac{1}{3}\) and \(y=12\).
\[
\begin{aligned}
& \frac{6\left(\frac{1}{3}\right)^{2}}{\left(\frac{1}{3}\right)(12)-8} \\
& =\frac{6\left(\frac{1}{9}\right)}{4-8} \\
& =\frac{\frac{2}{3}}{-4} \\
& =-\frac{1}{6}
\end{aligned}
\]

\section*{** PRACTICE}
1. Each bridge has an expression at the top. Using the input values at the start of each bridge, determine the output and write it at the end of each bridge.

3. A part of each expression is missing. Fill in the box with a number so that the given input and output values work in the expression. An example is given.
a. Expression: \(b+4-2(b+1)\)
Input: \(b=5 \quad\) Output: -3
Substitute 5 in place of \(b .5+\quad-2(5+1)\)

The missing value must be 4 for the expression to equal -3 .
b. Expression: \(\frac{s(-1+\quad)}{2}\)

Input: \(s=12\)
Output: 66
c. Expression: \(2 t^{2}+\sqrt[3]{ }-r\)

Input: \(t=-2, r=5 \quad\) Output: 5
6. Complete the maze by following the paths with the correct expression for the situation given.


Complete this Unit Review to prepare for the Unit Assessment. There is no video, lesson, or practice. Because Unit Reviews include practice for an entire unit, they may take longer than regular lessons, and students may decide to take two days to finish.


To get out of the Escape Room, you must solve the following riddle:
How can the number four be half of five?
Complete these 10 challenges to find the keys you need to solve the riddle and escape!

\section*{Challenge \#1: Decimals and Fractions} Lessons 1, 4-5
1. There are 241 keys in a basket. It takes you 3.7412 seconds to try each key in the keyhole. Estimate how long it will take you to try all the keys. Then use a calculator to find the exact time and round the answer to the nearest thousandth.

Estimate: \(\qquad\)

Rounded: \(\qquad\)

2. Divide. Write the answer as an exact decimal.
\(632 \div 48\)

3. Fill in the table to convert between fractions and decimals.
\begin{tabular}{|c|c|}
\hline Fraction & Decimal \\
\hline\(\frac{2}{3}\) & 0.6 \\
\hline \(4 \frac{5}{8}\) & \\
\hline
\end{tabular}

\section*{Challenge \#2: Prime Numbers and Simplifying}

Lessons 2-3
Your next challenge is to simplify fractions with impossibly large numerators and denominators. Simplify using upside down division and prime factorization to make the impossible possible!
4. \(\frac{420}{600}\)
5. \(\frac{248}{1240}\)
\(\qquad\)


\section*{Challenge \#3: Adding and Subtracting Signed Numbers}

Lessons 6, 10-11
6. Fill in each table by evaluating the given expressions. The value that does NOT match the others in each table gets the key! Be careful: you may have to convert between fractions and decimals to figure out which one is different.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{} \\
\hline Expression & Value \\
\hline \(4-10+2+7-1\) & \\
\hline\(-3+5-7+4-2\) & \\
\hline\(-1+4-2-(-1)\) & \\
\hline
\end{tabular}


\section*{Riddle Solution}

Use all capital letters when filling in the riddle!
\[
\overline{901.629-9 \frac{3}{25} 5 \times 10^{2}} \overline{12} \quad \overline{\frac{1}{5}} \quad \overline{12} \quad \overline{\frac{3}{25}} 901.629 \quad \overline{21} \quad \overline{5 \times 10^{2}} \quad \overline{21} \quad \overline{\frac{3}{25}} \quad \overline{\frac{3}{25}} \quad \overline{21} \quad \overline{-6.5} \quad-3
\]
\[
\overline{4.23 \times 10^{-8}} \overline{0 . \overline{6}} \quad \overline{\frac{3}{25}} \quad \overline{901.629} \quad \overline{21}
\]
\[
\overline{\frac{1}{2}} \quad-\quad-\frac{\mathrm{D}}{\frac{1}{5}} \quad-6.5
\]
\[
\begin{array}{lll}
12 & 4.23 \times 10^{-8}-4.08 \quad 21
\end{array}
\]
\[
\begin{aligned}
& \begin{array}{c}
\overline{\frac{3}{25}} \\
901.629 \\
\hline
\end{array} \overline{21} \overline{-6.5} \overline{\frac{1}{5}} \overline{2 \frac{1}{2}} \overline{-9} \frac{3}{25} \overline{0 . \overline{6}} \quad \overline{0 . \overline{6}} \quad \overline{-3.5} \quad \overline{2 \frac{1}{2}} \quad \overline{21} \quad-6.5-9 \frac{3}{25} \quad \overline{5 \times 10^{2}}
\end{aligned}
\]```

