

COURSE BOOK 4 TABLE OF CONTENTS

UNIT 4 OVERVIEW 1
Lesson 91: Scale Factor with Area 2
Lesson 92: Arcs and Sectors 8
Lesson 93: Geometric Solids 14
Lesson 94: Surface Area of Prisms and Pyramids. 21
Lesson 95: Surface Area of Cylinders, Cones, and Spheres 28
Lesson 96: Surface Area of Composite Solids 36
Lesson 97: Volume of Prisms and Cylinders 42
Lesson 98: Volume of Other Geometric Solids 48
Lesson 99: Polynomials 54
Lesson 100:Multiplying Polynomials 59
Lesson 101: Simplifying Rational Expressions. 64
Lesson 102:Factoring Polynomials 70
Lesson 103: Populations and Sampling Methods 77
Lesson 104: Data Displays: Part 1 83
Lesson 105:Logic Lesson 4 90
Lesson 106:Measures of Central Tendency. 93
Lesson 107: Interpreting Measures of Central Tendency. 98
Lesson 108: Data Displays: Part 2 104
Lesson 109:Scatter Plots 111
Lesson 110: Interpreting Graphs 118
Lesson 111: Simple Probability 124
Lesson 112: Types of Events. 131
Lesson 113: Sample Space 137
Lesson 114: Compound Probability 143
Lesson 115: Probability Simulation. 150
Lesson 116: Unit 4 Review. 154
Lesson 117: Course Review 158
Lesson 118: Course Assessment 162
Lesson 119: Enrichment: Patterns with Divisibility 169
Lesson 120:Fun with Graphing 174
Reference Chart 179

```
\bullet
    \bullet

\section*{CONCEPTS COVERED}
- Bar graphs
- Biased and unbiased samples
- Bimodal and unimodal graphs
- Box plots
- Chords, arcs, sectors, and central angles
- Circle graphs
- Clusters of data
- Complementary events
- Compound probability
- Cross sections of geometric solids
- Determining correlation on graphs
- Experimental probability
- Factoring the GCF from binomials
- Factoring the GCF from trinomials
- Finding a missing data value given the mean
- Finding a sample space
- Finding arc length
- Finding area of sectors
- First, second, and third quartiles
- Frequency tables
- Geometric solids
- Histograms
- Identifying better measures of center
- Identifying modes on a graph
- Independent and dependent events
- Interpreting graphs
- Interpreting measures of central tendency
- Interquartile range
- Line graphs
- Lines of best fit
- Measures of central tendency (mean, median, mode)
- Multiplying monomials by binomials
- Multiplying monomials by monomials
- Mutually exclusive events
- Nets of three-dimensional figures
- Pictographs
- Properties of polyhedra
- Random samples
- Range of data sets
- Sample and sample size
- Scatter plots
- Simple probability
- Simple, stratified, and systematic samples
- Simplifying rational expressions
- Statistics and surveys
- Stem-and-leaf plots
- Surface area of composite solids
- Surface area of cones using a formula
- Surface area of cylinders using nets
- Surface area of prisms using nets
- Surface area of pyramids using nets
- Surface area of spheres using a formula
- Symmetric, right-skewed, and left-skewed graphs
- Theoretical probability
- Understanding outliers
- Volume of cubes and other rectangular prisms
- Volume of cylinders
- Volume of triangular prisms
- Writing monomials as products of factors



\section*{LESSON OVERVIEW}

Three-dimensional figures are often referred to as geometric solids, and they have special properties. A polyhedron (plural: polyhedra) is a three-dimensional figure with polygons as faces. A face of a polyhedron is a flat surface on the solid. An edge is a line segment formed where two faces meet, and a vertex is a point where two or more edges meet. (The plural of vertex is vertices.)

A special type of polyhedron is a prism. A prism is a solid with two congruent, parallel bases and flat sides. Prisms are often named for the shape of their bases. All non-base faces of a prism are rectangles. Some examples of prisms are below.


Note: Cubes, square prisms, and rectangular prisms all have 6 faces, 12 edges, and 8 vertices.

\section*{Triangular Prism}

The bases are triangles. All other faces are rectangles.


\section*{Pentagonal Prism}

The bases are pentagons.
All other faces are rectangles.


Another special type of polyhedron is a pyramid. A pyramid is a solid with one base and flat sides. A pyramid is often named for the shape of its base. All non-base faces of a pyramid are triangles. The apex of a pyramid is the vertex where all the triangular faces meet.

\section*{Triangular Pyramid}

The base is a triangle. All other faces are triangles.


\section*{Square Pyramid}

The base is a square. All other faces are triangles.


Hexagonal Pyramid
The base is a hexagon. All other faces are triangles.

!! The ancient Egyptians built square pyramids. Pyramids are also found in art and modern architecture, like the entrance to the Louvre Museum in France.

Below are examples of geometric solids that are not polyhedra.


A sphere is a geometric solid that is not a polyhedron because the surface of a sphere is not made from polygons. Every point on the surface of a sphere is the same distance from the center of the sphere. Examples of spheres include bowling balls and oranges.


A cone has a circular base and a curved surface. The tip of a cone is called the apex. The height of a cone is the distance from the center of the base to the apex. Some cone-shaped objects are traffic cones and ice cream cones.

\section*{Cylinder}


A cylinder is a solid with two circular bases that are congruent and parallel. An example of a cylinder is a metal can or a plumbing pipe.

\section*{Cross Sections}

A cross section is the shape formed by cutting straight through a solid. The same solid can have cross sections of different shapes. A cross section that is parallel to the base of a polyhedron will be the same shape as the base. Look at the cross sections of various geometric solids below. The shape of each cross section is listed below the solid.

Cross Sections of a Sphere
Every cross section of a sphere is a circle.


\section*{Cross Sections of a Cone} The horizontal cross section of a cone is a circle. The vertical cross section through the apex is a triangle.


Cross Sections of a Cylinder

Cross sections parallel to the bases are circles.

circle

Cross sections perpendicular to the bases are rectangles.

rectangle

\section*{Cross Sections of Pyramids}

Below are just a few examples of possible vertical and horizontal cross sections for a triangular pyramid, square pyramid, and hexagonal pyramid.

Horizontal cross sections (parallel to the base):

triangle

square

hexagon

Vertical cross sections (perpendicular to the base):

trapezoid or triangle

trapezoid

triangle

\section*{Cross Sections of Prisms}

In a cube, like the one below, cross sections parallel to the bases and cross sections perpendicular to the bases are squares.


In a triangular prism, cross sections parallel to the bases are triangles. Cross sections perpendicular to the bases are rectangles.


\section*{PRACTICE}
1. Fill in the table with the general name for each geometric solid. Choose from the word bank below.
word Bank:
\begin{tabular}{|cc|}
\hline sphere \\
pyramid
\end{tabular} \begin{tabular}{c} 
cylinder
\end{tabular}
Solid
2. For each shape, write whether the indicated part is a face, edge, vertex, or apex.

3. Identify the shape of the indicated cross sections in each solid.
a.

b.

4. For each geometric solid listed below, draw an example of the solid below the name. Then find its name in the word search.

Rectangular Prism Cylinder

Square Pyramid
Sphere
Triangular Pyramid

Square Prism
Cone
Pentagonal Prism

For fun, here are some additional words to find in the word search:

VERTEX
EDGE
FACE
APEX
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P & T & R & 1 & A & N & G & U & L & A & R & P & Y & R & A & M & 1 & D & A & U \\
\hline B & E & T & F & D & D & \(J\) & D & K & Z & V & R & E & F & \(\bigcirc\) & V & M & Q & P & Q \\
\hline H & Z & N & C & P & M & A & \(\checkmark\) & D & B & E & F & Q & E & D & U & X & L & E & C \\
\hline U & M & N & T & \(\bigcirc\) & G & N & w & X & P & G & \(\checkmark\) & M & N & C & A & E & L & X & Y \\
\hline W & M & \(J\) & R & A & N & S & O & Y & M & D & L & L & W & F & G & X & \(\bigcirc\) & 1 & B \\
\hline T & B & S & L & E & G & E & S & C & L & U & Y & E & F & T & Q & B & \(\bigcirc\) & T & C \\
\hline V & C & \(\checkmark\) & U & 1 & C & \(\bigcirc\) & T & T & Z & \(\bigcirc\) & K & D & P & \(\cup\) & T & S & L & A & Y \\
\hline Z & E & U & X & E & R & T & N & M & G & K & D & G & B & \(\bigcirc\) & I & F & N & B & L \\
\hline M & X & R & 1 & H & F & L & A & A & S & L & W & E & U & L & \(\cup\) & D & C & E & 1 \\
\hline E & W & 1 & T & X & F & S & S & N & L & W & L & Q & D & V & 1 & V & S & Y & N \\
\hline Q & \(\cup\) & K & Z & E & Y & T & Q & S & G & P & Q & A & U & E & M & S & T & E & D \\
\hline \(\bigcirc\) & F & R & B & W & X & \(\bigcirc\) & G & U & B & \(\cup\) & R & S & P & H & E & R & E & F & E \\
\hline H & J & 1 & Y & S & D & R & R & 1 & A & X & L & I & V & \(\cup\) & J & Y & T & C & R \\
\hline K & B & C & C & K & P & Y & 1 & V & L & R & 1 & A & S & Q & G & T & R & G & P \\
\hline S & M & 1 & U & D & A & D & D & z & R & F & E & X & R & M & Z & L & Q & X & Y \\
\hline A & P & S & B & B & J & \(J\) & P & Y & M & W & A & P & P & P & M & 1 & H & B & G \\
\hline Z & A & M & B & R & E & P & Z & T & 1 & V & Z & C & R & D & R & L & N & M & P \\
\hline D & N & Z & D & 1 & M & R & H & B & & M & U & S & E & 1 & U & 1 & X & 1 & X \\
\hline R & L & R & N & A & S & V & B & P & \(J\) & C & X & R & G & R & S & Z & S & R & Z \\
\hline M & & S & & U & & R & & & & R & A & M & & D & M & M & M & M & \\
\hline
\end{tabular}

\section*{* REVIEW}
1. Use the image below to answer the questions. When necessary, round to the nearest tenth.

a. What is the area of the watermelon slice (entire circle)? L84
\(A \approx\) \(\qquad\)
b. If the watermelon slice is cut into wedges the size of sector MLN, how many wedges can be cut from the slice? L92
\(\qquad\) wedges
c. The outside edge of the watermelon slice is called the rind. What is the length of the rind on the wedge represented by sector MLN? L92
+ Hint: Find the length of \(\overparen{M N}\)
\(\qquad\)
2. Lewis borrowed \(\$ 3,000\) from his aunt to pay for graduate school. Four years after borrowing the money, he wants to pay it back with \(2.5 \%\) simple interest. How much interest will he pay? \(\llcorner 49\)

\footnotetext{
\& Hint: The simple interest formula is / = Prt.
}
3. What is the length of \(L D\) in the figure below?

L81
\& Hint: Use the Pythagorean Theorem.

4. After helping her dad build a shed, Janet found three leftover pieces of wood that were 6 \(\mathrm{in}, 9 \mathrm{in}\), and 1 ft long. Can a triangle be formed from the pieces of wood? L 71

\footnotetext{
+ Hint: First convert all dimensions to the same units. To form a triangle, the sum of any two sides must be greater than the third side.
}
\(\qquad\)


\section*{PRACTICE}
1. Use the height and the given area of the base to find the volume of each solid.
- Hint: See the Key Information box in the Lesson Overview.

\(\qquad\)


d. 2 in
\(\qquad\)


\section*{LESSON OVERVIEW}

Volume is used in things like cooking, baking, medicine, and engineering. Every threedimensional shape has volume. The volume of different solids can be found using formulas. Volume is expressed in cubic units.

\section*{Volume of a Cone}

The volume of a cone is found using the formula \(V=\frac{1}{3} B h\), where \(B\) is the area of the base and \(h\) is the height of the cone. The height of a cone is the distance from the apex to the base.

Example 1: An office waiting room has a water tank with small cone-shaped cups. Below is an image with measurements. Find the volume of the cup to the nearest hundredth.


To use the volume formula, calculate the area of the base first.

Area of Base (B):
The base of a cone is a circle.
\[
\begin{aligned}
& A=\pi r^{2} \\
& A=\pi(1.2)^{2} \\
& A=1.44 \pi \\
& A \approx 4.52
\end{aligned}
\]

The area of the circle is approximately \(4.52 \mathrm{in}^{2}\).
This is the value of \(B\) in the volume formula.

Volume of Cone:
Use 4.52 for \(B\).
\[
V=\frac{1}{3} B h
\]
\[
V=\frac{1}{3}(4.52)(4.75)
\]
\[
V \approx 7.16
\]

The volume of the cup is about 7.16 in \(^{3}\).

Fun Fact: This is almost 4 fl oz.

\section*{Volume of a Pyramid}

The volume of a pyramid is found using the formula \(V=\frac{1}{3} B h\), where \(B\) is the area of the base and \(h\) is the height of the pyramid. The height of a pyramid is the distance from the apex to the base.

Example 2: Find the volume of the square pyramid.
Area of Base (B):


The base of this pyramid is a square.
\[
\begin{aligned}
& A=s^{2} \\
& A=12^{2} \\
& A=144
\end{aligned}
\]

The area of the square is \(144 \mathrm{~cm}^{2}\). This is the value of \(B\) in the volume formula.

Volume of Pyramid:
Use 144 for \(B\).
\[
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(144)(6) \\
& V=288
\end{aligned}
\]

The volume of the pyramid is \(288 \mathrm{~cm}^{3}\).

Example 3: The Great Pyramid of Giza is the biggest Egyptian pyramid. Find the volume of the pyramid using the original height of about 481 feet and the original base side length of about 756 feet. (The base is square.)
To use the volume formula, calculate the area of the base first.

Area of Base (B):
The base of this pyramid is a square.
\[
\begin{aligned}
& A=s^{2} \\
& A=756^{2} \\
& A=571536
\end{aligned}
\]

The area of the square is \(571,536 \mathrm{ft}^{2}\).
This is the value of \(B\).
\[
\begin{aligned}
& \text { Volume of Pyramid: } \\
& \text { Use } 571,536 \text { for } B . \\
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(571536)(481) \\
& V \approx 91636272
\end{aligned}
\]

The volume of the pyramid is about
\[
91,636,272 \mathrm{ft}^{3} .
\]

\section*{Volume of a Sphere}

The volume of a sphere is found using the formula \(V=\frac{4}{3} \pi r^{3}\).
Example 4: A spherical glass vase is filled with water beads. Find the volume of the sphere if the radius of the vase is 6 inches.

\[
V=\frac{4}{3} \pi r^{3} \quad \text { Substitute } 6 \text { for the radius. }
\]
\[
V=\frac{4}{3} \pi(6)^{3} \quad \text { First, find } 6 \text { cubed. }
\]
\[
V=\frac{4}{3} \pi(216)
\]
\[
V=288 \pi
\]

Fun Fact: This is almost 4 gallons.
\[
V \approx 904.78
\]

\section*{Volume of Composite Solids}

The volume of composite solids can be found by finding the volume of each threedimensional figure that makes up the composite solid and adding the volumes together.

Example 5: Calvin has a coin bank that is a square prism base with a basketball on top. Given the measurements below, find the volume of the coin bank.

\[
\begin{aligned}
& V=l w h \\
& V=4 \bullet 2 \bullet 2 \\
& V=16
\end{aligned}
\]

Volume of Sphere:
\[
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi(1.5)^{3} \\
V & =\frac{4}{3} \pi(3.375) \\
V & =4.5 \pi \\
V & \approx 14.14
\end{aligned}
\]

Add the two volumes together to find the volume of the composite solid.
\(16+14.14=30.14 \quad\) The volume of the coin bank is approximately \(30.14 \mathrm{in}^{3}\).
3. Begin at START. Find the volume of the shapes shown to work your way through the maze. Round each volume to the nearest whole number.


\section*{PRACTICE}

Cut out the squares below. Simplify the four rational expressions on each square and write the simplified expression on the line provided. Once all expressions have been simplified, match the sides of the squares together if they simplify to the same expression. Each square will match to two other squares.


\section*{* REVIEW}
1. Richard is building a circular flower garden according to the design shown below.

a. Write and solve an equation to find the value of \(g\). Then find the measure of each angle. L80
\[
g=\ldots \quad m \angle F S L=
\]
\(m \angle L S O=\) \(\qquad\)
b. Find the area and circumference of the garden rounded to the nearest hundredth. L84

Area: \(\qquad\)
Circumference: \(\qquad\)
c. Richard will plant peonies in sector LSO and carnations in sector FSL. What is the area of each of these sectors? L92

LSO: \(\qquad\) FSL: \(\qquad\)


\section*{* PRACTICE}

Use the scatter plots below for Problems 1 through 4.

1. Circle any scatter plots that appear to show a positive correlation in yellow.
2. Circle any scatter plots that appear to show a negative correlation in blue.
3. Circle any scatter plots that do not appear to show a correlation in red.
4. For the scatter plots that appear to show a correlation, draw an estimated line of best fit on each graph.
5. Each of the scatter plots below shows three lines. Circle the line that best fits the data.

b.

2. Use the word bank to fill in the blank(s) in each sentence. Then find the missing words in the word search.
a. The \(\qquad\) is the middle number of a data set.
b. The \(\qquad\) of a data set is obtained by adding all the data values and dividing by the number of data values.
c. A graph of data will look
if the mean and median are close to each other.
d. When the mean is \(\qquad\) than the median, a graph will be right
\(\qquad\) _.
e. If the data has some outliers that are significantly less than the majority of other data values, the graph will be \(\qquad\) skewed, and the mean will be \(\qquad\) than the median.
f. A box plot of right-skewed data will have a
\(\qquad\) whisker on the right.
g. The most common data value in a set is the
\(\qquad\) .
h. A data set with one mode is called
\(\qquad\) .
i. A \(\qquad\) data set will have a
graph with two peaks.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & C & M & K & W & C & K & K & O & E & C & C & C & C & I & L & J & A & V & E U \\
\hline WORD BANK & M & M & R & I & O & W & V & M & G & L & S & A & J & H & S & S & N & E & P H \\
\hline & B & & F & P & T & H & P & K & H & V & L & N & K & Q & F & H & R & H & Y Z \\
\hline bimodal & O & Y & V & V & S & R & X & G & X & A & Z & M & T & O & Z & S & T & F & J W \\
\hline & D & E & V & W & L & Y & O & U & T & J & C & O & L & U & L & N & N & O & N I \\
\hline & D & G & P & K & V & Z & Z & T & U & L & Q & M & K & O & Y & Q & V & M & U E \\
\hline left & U & C & R & U & K & A & Z & F & W & L & I & E & N & W & N & U & U & E & N K \\
\hline less & N & S & X & S & L & C & Y & V & V & S & D & D & T & G & L & G & I & A & I D \\
\hline & V & H & K & Y & J & E & S & B & X & Q & N & I & L & J & Z & Q & E & N & M N \\
\hline longer & U & W & S & X & K & J & S & O & B & E & I & A & C & T & N & R & F & R & O R \\
\hline mean & & D & D & H & D & R & R & S & N & I & U & N & F & S & U & P & L & Q & D N \\
\hline & F & F & O & G & E & O & K & B & M & M & G & L & W & T & I & F & W & Y & A S \\
\hline median & S & Y & Q & B & W & Z & Q & U & S & Y & M & M & E & T & R & I & C & L & L A \\
\hline mode & F & N & C & J & I & M & O & D & E & X & R & E & O & G & D & B & V & A & Q K \\
\hline & Y & V & L & K & G & M & E & O & V & U & Y & R & N & O & T & D & C & R & M I \\
\hline skewed & F & M & B & P & I & F & O & S & K & E & W & E & D & B & Z & I & X & G & P R \\
\hline symmetric & P & L & F & X & I & O & J & D & P & W & T & D & J & P & I & D & L & E & F T \\
\hline & L & E & & O & J & H & V & O & A & N & V & C & H & V & J & V & I & R & E X \\
\hline unimodal & L & A & P & A & Q & I & N & Q & G & L & F & F & H & I & K & H & M & W & J C \\
\hline & A & & & T & & & & & & & & & & & & & & & B X \\
\hline
\end{tabular}

\section*{* REVIEW}
1. The data set below represents the resting heart rate of six high school cross-country runners. Find the mean, median, mode, and range of the data set. L106

Data set: \(53,42,60,48,51,64\)
a. Mean: \(\qquad\)
b. Median: \(\qquad\)
c. Mode: \(\qquad\) d. Range: \(\qquad\)
2. The histogram below represents the ages of customers eating ice cream cones at Ina's Ice Cream Shop.

a. Is the histogram left skewed, right skewed, or symmetric? L110
b. Based on your answer to Part A, compare the median and mean of the data using \(<,>\), or \(\approx\). L110
mean \(\bigcirc\) median
3. Niya is making a play tent as a gift for her niece's birthday. The design is shown below. The diameter of the tent base is 4 ft . The height of the tent in the center is 5.5 ft , and the height of the cylindrical portion is 4 ft . The height of the cone roof is 1.5 ft . The tent will include a fabric floor.

a. To figure out how much fabric she will need to make the tent, Niya needs to find the surface area of the composite solid. What is the surface area of the tent? Round to the nearest tenth. L96
\& Hint: The cylinder part of the tent has just one circular base, and the cone portion does not include a base. See Reference Chart for formulas.
b. Fabric is typically sold by the square yard. Convert the surface area to square yards. Round to the nearest whole number. L55


UNIT 4 | LESSON 113
Sample Space

Find the probabilities below for one roll of a six-sided die. Write each probability as a fraction in simplest form.
a. What is the probability of rolling a 3? \(\qquad\)
b. What is the probability of rolling a number less than 3 ? \(\qquad\)

c. What is the probability of rolling an even number? \(\qquad\)

\section*{LESSON}

Use the app to watch the video lesson. Complete problems when instructed during the video in the Video Notes section. Optionally, read the Lesson Overview in place of the video or after the video if more instruction is needed.

of:


\section*{LESSON OVERVIEW}

When finding the likelihood of more than one event occurring, it can help to see all the possible outcomes visually. A sample space is the set of all possible outcomes of a probability experiment. There are many ways to represent the sample space, including lists, tree diagrams, and tables. Representing the sample space is an important part of understanding and calculating probabilities.

\section*{Organized Lists}

Writing the sample space in a list makes it easier to count the desired outcomes and total outcomes.

Example 1: Suppose two tiles are randomly drawn from a bag containing the five tiles shown below. Find the probability of drawing the triangle tile and circle tile.


Make a list of the possible combinations when drawing two of the five tiles. Start by pairing one shape with all other shapes. Then pair another shape with the three shapes it has not been paired with, and so on, until all possible pairings are listed. This helps to ensure no possible outcome is missed. The sample space is represented below with a list.
\begin{tabular}{llll} 
circle - star & star - triangle & triangle - pentagon & pentagon - heart \\
\hline circle - triangle & star - pentagon & triangle - heart & \\
\hline circle - pentagon & star - heart & \\
circle - heart & & &
\end{tabular}

There are 10 possible outcomes when drawing two of the five tiles. Drawing the triangle and the circle is one of these 10 outcomes (highlighted above).
The probability of drawing the triangle and circle is \(\frac{1}{10}\), or \(10 \%\).

\section*{Tree Diagrams}

A tree diagram can be used to find all possible outcomes for a repeated event, like flipping a coin. In a tree diagram, the outcomes of each event are in separate columns.

Example 2: Find the probability of flipping a coin three times and getting heads at least twice.

A tree diagram is shown to the right. A list of the possible outcomes can be made from a tree diagram. Start at the top and work down through all the options for each flip.
\begin{tabular}{llll} 
HHH & HHT & HTH & HTT \\
THH & THT & TTH & TTT
\end{tabular}

There are 8 possible outcomes. There are 4 outcomes for flipping at least two heads (highlighted above).
The probability of flipping at least two heads is \(\frac{4}{8}=\frac{1}{2}\), or \(50 \%\).


\section*{Tables}

A table is especially useful for probabilities with several possible outcomes.
Example 3: Find the probability of rolling a 5 and a 4 when rolling a pair of dice.
The table below shows the possible outcomes of rolling two dice. There are 36 possible outcomes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
First Roll \(\rightarrow\) \\
Second \\
Roll
\end{tabular} & \(\bullet\) & \(\square\) & \(0^{\circ}\) & 0 & 0 & : \(:\) \\
\hline \(\bullet\) & \(\bullet \bullet\) & \(\bullet \bullet\) & \(\bullet \bullet\) & \(\cdots\) & \(\cdots\) & \(\because: \square\) \\
\hline \(\bigcirc\) & \(\bullet \bullet\) & \(\bullet \bullet \bullet\) & \(\bullet^{\circ} \bullet \bullet\) & \(\cdots\) & \(\because \bullet\) &  \\
\hline \(\bullet 0\) & \(\bullet \bullet \bullet\) & \(\bullet \bullet \bullet\) & \(\bullet^{\circ} 0^{\circ}\) & \(\cdots\) & \(\cdots 0^{\bullet} \bullet\) & \(\because: \bullet^{\circ}\) \\
\hline \(r\) &  & \(\bullet \bullet \bullet \bullet\) & \(\square^{\bullet}{ }^{\circ}\) & \(\left[\begin{array}{lllll}\bullet & 0 \\ \bullet & 0\end{array}\right]\) & \(\left[\begin{array}{llll}\bullet & \bullet \\ \bullet & \bullet & \bullet & 0 \\ \bullet & 0\end{array}\right.\) & 0 \\
\hline 0 & \(\cdots \square\) &  & \(\bullet \bullet \bullet\) & \(\cdots\) & \(\cdots\) &  \\
\hline : : & \(\square!:\) & \(\square \bullet:\) &  & [10 & \(0 \cdot 0\) &  \\
\hline
\end{tabular}

There are two outcomes for rolling a 5 and a 4 (highlighted above). The purple die could land on 5 and the blue die could land on 4 , or the purple die could land on 4 and the blue die could land on 5 .
The probability of rolling a 5 and 4 is \(\frac{2}{36}=\frac{1}{18}\), or \(5 . \overline{5} \%\).

6. a. Are the experimental probabilities after 10 rolls equal to the theoretical probabilities? \(\qquad\)
b. Are the experimental probabilities after 40 rolls equal to the theoretical probabilities? \(\qquad\)
c. Why does experimental probability sometimes differ from theoretical probability?
7. Add the frequencies found in Problems 2 and 3 together and record the total frequencies in the table below. This table represents rolling the die 50 times.
\begin{tabular}{|c|l|}
\hline Roll & Frequency \\
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline 4 & \\
\hline 5 & \\
\hline 6 & \\
\hline
\end{tabular}

Find the experimental probability of rolling each number out of 50 rolls.

Fraction: Percent:
1. \(\qquad\)
2. \(\qquad\)
\(\qquad\)
3. \(\qquad\)
\(\qquad\)
4. \(\qquad\)
\(\qquad\)
5. \(\qquad\)
\(\qquad\)
6. \(\qquad\)
\(\qquad\)
8. Fill in the table representing the sample space of rolling two dice. Some examples are given.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
First Roll \(\rightarrow\) \\
Second \\
Roll
\end{tabular} & \(\bullet\) & \(\square\) & \[
0^{\circ}
\] & [100 & 0 & : : \\
\hline \(\bullet\) & 1,1 & & & & & \\
\hline \(\square\) & & & & & 5,2 & \\
\hline \(\bigcirc\) & & & & & & \\
\hline 0 & & 2, 4 & & & & \\
\hline 0 & & & & & & \\
\hline : & & & & & & \\
\hline
\end{tabular}

\section*{Scale Factor with Area} Lesson 91

\section*{UNIT 4 | LESSON 116}

\section*{Unit 4 Review}
Complete this Unit Review to prepare for the Course Assessment. There is no video, lesson, or practice. Because Unit Reviews include practice for an entire unit, they may take longer than regular lessons, and students may decide to take two days to finish Round all answers to the nearest hundredth, unless otherwise specified.
Posey, Toby, and Winston held a summer Bible camp for the younger children in their neighborhood.

Winston and Toby decided to pass flyers out to all their neighbors. They created a 4 -in by 6 -in design and then enlarged each dimension by a scale factor of 2 .
a. What was the area of the initial design?
b. What are the dimensions of the flyer?
\(\qquad\) and \(\qquad\)
c. What is the area of the flyer?
d. By what factor did the area of the design increase?

2. With a lot of facial expressions, Posey read Bible stories that the children enjoyed. Simplify the mathematical expressions below.
a. \(x^{2} y+3 x-2 x^{2} y-1-x\)


\section*{Polynomials \\ Lessons 99-102}



\section*{Measures of Central Tendency}

Lessons 106, 107
9. As part of an activity about Jesus providing fish for fishermen (Luke 5), some of the children at Bible camp were given fish-shaped crackers as a snack. Older kids received bigger piles of crackers. Ten children counted their crackers. The number of crackers in each pile is shown below.
\[
35,47,39,52,62,46,52,63,42,39
\]
a. What is the mode number of crackers?
\(\uparrow\) Hint: There is more than one mode.
Mode: \(\qquad\)
b. What is the median number of crackers?
\& Hint: First, put the data in numerical order.
Median: \(\qquad\)
c. One child chose not to count his crackers. If the average number of crackers among the 11 children was 48, how many crackers did this last child have?
\(\qquad\)


Scatter Plots
Lesson 109
12. After the camp, Posey gave out surveys to the families. She created a scatter plot to see if there was a relationship between a child's age and how well he or she rated the camp.

a. What type of correlation is shown on the scatter plot? Circle one.
positive / negative / no correlation
b. Draw a line of best fit on the scatter plot.

This lesson is a multiple-choice Course Review to prepare for the Course Assessment. There is no video, lesson, or practice.

This review may take longer than regular lessons, and students may decide to take two days to finish.

Lesson numbers are given for each question so students can review lessons as needed.

Circle the letter of the correct answer for each problem. Simplify all answers and round to the nearest hundredth when necessary.
1. Convert 2.6 to a mixed number. L 5
a. \(\frac{13}{5}\)
b. \(2 \frac{6}{10}\)
c. \(2 \frac{3}{5}\)
d. \(2 \frac{1}{6}\)
2. The decimal equivalent of \(3 \frac{2}{7}\) is \(\llcorner 4\)
a. terminating. b. repeating.
3. The prime factorization of 132 is \(L 2\)
a. \(2 \cdot 3 \bullet 11\).
b. \(4 \bullet 3 \bullet 11\).
c. \(11 \bullet 12\).
d. \(2 \bullet 2 \bullet 3 \bullet 11\).
4. Evaluate \(3^{2}(1-2 \bullet(-4))\). L21
a. 81
b. -63
c. 54
d. -42
5. Evaluate \(\frac{\frac{3}{4}-\frac{1}{2}}{2}\). L22
a. \(\frac{1}{2}\)
b. \(\frac{1}{8}\)
c. 1
d. \(\frac{1}{4}\)
6. Evaluate the expression \(3 a+b^{2}\) when \(a=2\) and \(b=5\). L24
a. 16
b. 31
c. 19
d. 5
7. Solve \(2 t-1=1.8\) for \(t\). L33
a. 5.6
b. 0.9
c. 0.4
d. 1.4
8. Solve \(-\frac{2}{3}(p+1)=4\) for \(p\). L 35
a. -7
b. -5
c. 7
d. 5
9. Graph the solutions to \(4 x \geq x+6\). L39

10. A fruit basket contains three oranges for every two apples. The basket contains 30 pieces of fruit. How many oranges does it contain? L42
a. 10
b. 18
C. 12
d. 15
11. Which of the following proportions shows the relationship 6 is to 4 as \(x\) is to 6 ? L41
a. \(\frac{6}{4}=\frac{x}{6}\)
b. \(6 \bullet 4=x \bullet 6\)
c. \(\frac{6}{6}=\frac{4}{x}\)
12. Convert \(\frac{3}{8}\) to a percent. \(L 5, L 46\)
a. \(0.125 \%\)
b. \(0.375 \%\)
c. \(12.5 \%\)
d. \(37.5 \%\)

This assessment covers concepts taught in Math 7. Problems are designed to assess multiple skills. Read the instructions carefully and do not rush through the problems.

Students may use the Reference Chart for the assessment. Lesson numbers are given by each problem so you can review lessons for any answers that are incorrect.

Calculators may be used where needed on the entire assessment.
1. Simplify the fraction using prime factorizations. L2, L3
\[
224
\]
\[
672
\]
a. \(\frac{1}{8}\) \(\qquad\) b. \(\frac{3}{200}\)
3. Convert the decimals to fractions. L5
a. 0.145
b. 0.08
6. Simplify the expressions. L23
a. \(17 z-4 z+16+13\)
b. \(4 t^{2}+3 s-7 t^{2}+5 s\)
7. Evaluate the expressions when \(a=3\) and \(b=-5\). L24
a. \(\frac{10 a}{3 b}\)
b. \(3 a-4 b\)
4. Evaluate the exponential expressions. L13, L14
a. \(5^{3}\)
b. \(\left(\frac{1}{2}\right)^{3}\)
c. \(3^{-4}\)
5. Evaluate the expressions. L21, L22
a. \(\left(5+11^{2}\right) \div 3\) \(\qquad\)
b. \(6 \cdot 4-19+2^{3}\) \(\qquad\)

\(\qquad\)
b. \(4 t^{2}+3 s-7 t^{2}+5\)
\(\qquad\)
8. Tanner and his brother Tony raise dairy cows. Let \(m\) represent the number of gallons of milk Tanner's cow produces in a day, and let \(k\) represent the number of gallons Tony's cow produces in a day. Write an expression to represent how many gallons the family will get from the cows in 30 days. L25, L26
19. Fill in the table by substituting into the equation, and then use the table to graph the equation. L65, L70
\[
y=x^{2}+2
\]
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline-2 & \\
\hline-1 & \\
\hline 0 & \\
\hline 1 & \\
\hline 2 & \\
\hline
\end{tabular}

20. Fill in the coordinates of the image if the preimage is reflected over the \(x\)-axis. \(L 72\)
\begin{tabular}{|c|c|c|c|c|}
\hline Preimage & \((-4,2)\) & \((-9,2)\) & \((-4,7)\) & \((-9,7)\) \\
\hline Image & & & & \\
\hline
\end{tabular}
21. The table below represents a function. Identify the rule of the function and fill in the missing value in the table. L69
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline 0 & 4 \\
\hline 1 & 5 \\
\hline 2 & \\
\hline 3 & 7 \\
\hline 4 & 8 \\
\hline
\end{tabular}

Rule:
Missing Value:
22. Write the letter of the equation that matches the line graphed below. L66-68
a. \(y=\frac{1}{3} x+8\)
b. \(y=2 x-3\)
c. \(y=-x+6\)
d. \(y=-\frac{3}{4} x-2\)

23. Find the measure of the missing angle in the triangle. \(\llcorner 71\)

24. Find the measure of the missing angles in the isosceles trapezoid. L77

\(x=\) \(\qquad\)
25. Calculate the sum of the interior angles of the pentagon by splitting the shape into the fewest number of triangles possible. L76

\(\qquad\) \(\therefore \dot{\bar{O}}\)

\section*{}
41. Fill in the missing percent in the circle graph below. L104

42. Find the probability (as a fraction) of getting a window seat on an airplane if the seats are randomly assigned and 60 of the 180 seats are window seats. L111
\(\qquad\)
43. Determine whether the graph is left skewed, right skewed, or symmetric. L110


Circle one:
left skewed right skewed symmetric
44. Determine the correlation in the scatter plot.

Write positive, negative, or no correlation on the line. L109

45. Determine if the following events are mutually exclusive. Write yes or no on the line. L112
a. Event 1: ordering french fries at a restaurant
Event 2: ordering onion rings at the same restaurant
\(\qquad\)
b. Event 1: winning a race

Event 2: losing the same race
46. Write the data in numerical order. Then find the mean, median, mode, and range of the data set. L106
\(7,7,8,10,11,11,9,9,63\),
\(15,13,11,13,12,15,14\)
Numerical order: \(\qquad\)
\(\qquad\)
Mean: \(\qquad\) Median: \(\qquad\)
Mode: \(\qquad\) Range: \(\qquad\)
47. For the data set in Problem 46, is the mean or median a better measure of center? L107

Circle one: mean / median
Why? \(\qquad\)
\(\qquad\)
§ SUPPLIES: 20-30 small objects
Counting manipulatives are needed for this lesson. Any small objects may be used (beans, cereal pieces, buttons, etc.). Do not use more than 30 manipulatives.

This is an enrichment lesson. Mastery is not expected at this level. There is no video, practice, or review. A calculator may be used for this entire lesson.

\section*{Divisibility by 3}

Avoid using long division to answer questions. Instead, use the manipulatives and rely on patterns to answer the questions about divisibility.
1. How many groups of 3 can be made with 10 items? How many are left over?

Groups: \(\qquad\) Remaining: \(\qquad\)
2. How many groups of 3 can be made with 2 tens (two groups of 10)? How many are left over?

Groups: \(\qquad\) Remaining: \(\qquad\)
How does this answer relate to the answer for Question 1?
3. How many will be left over after making groups of 3 out of 3 groups of 10 ? Why is this?

Remaining: \(\qquad\)
Why?
\(\qquad\)
\(\qquad\)
4. How many will be left over after making groups of 3 out of 7 groups of 10 ? Why is this?

Note: Do not use manipulatives for problems with more than 30 items.
Remaining: \(\qquad\)
Why?
\(\qquad\)
\(\qquad\)
5. Are there any remaining when 72 is split into groups of 3 ? Why is this?

Remaining: \(\qquad\)
Why?
\(\qquad\)
\(\qquad\)```

